Taskonomy: Disentangling Task Transfer Learning

Author:

Zamir Amir12,Sax Alexander1,Shen William1,Guibas Leonidas1,Malik Jitendra2,Savarese Silvio1

Affiliation:

1. Stanford University

2. University of California, Berkeley

Abstract

Do visual tasks have relationships, or are they unrelated? For instance, could having surface normals simplify estimating the depth of an image? Intuition answers these questions positively, implying existence of a certain structure among visual tasks. Knowing this structure has notable values; it provides a principled way for identifying relationships across tasks, for instance, in order to reuse supervision among tasks with redundancies or solve many tasks in one system without piling up the complexity. We propose a fully computational approach for modeling the transfer learning structure of the space of visual tasks. This is done via finding transfer learning dependencies across tasks in a dictionary of twenty-six 2D, 2.5D, 3D, and semantic tasks. The product is a computational taxonomic map among tasks for transfer learning, and we exploit it to reduce the demand for labeled data. For example, we show that the total number of labeled datapoints needed for solving a set of 10 tasks can be reduced by roughly 2/3 (compared to training independently) while keeping the performance nearly the same. We provide a set of tools for computing and visualizing this taxonomical structure at http://taskonomy.vision.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3