The Influence of Laser Alloying of Ti13Nb13Zr on Surface Topography and Properties

Author:

Tęczar P.1,Majkowska-Marzec B.1,Bartmański M.1

Affiliation:

1. Gdansk University of Technology , Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering , 11/12 Narutowicza, 80-233 Gdańsk , Poland

Abstract

Abstract The laser alloying is a continually developing surface treatment because of its significant and specific structuration of a surface. In particular, it is applied for Ti alloys, being now the most essential biomaterials’ group for load-bearing implants. The present research was performed on the Ti13Nb13Zr alloy subject to laser modification in order to determine the treatment effects on surface topography and its some mechanical properties like nanohardness, Young’s modulus, roughness. A pulse laser Nd:YAG was applied at three different laser pulse regimes: either 700 W, 1000 W or 1000 W treatment followed by 700 W modification at a pulse duration of 1 ms. The surface topography and morphology were examined using light microscopy and scanning electron microscopy with spectroscope of X-ray energy dispersion. The mechanical properties were determined by nanoindentation tests and surface roughness with a use of profilograph. The wettability was tested with a goniometer. The obtained results demonstrate complex behavior of the material surface: decrease in penetration distance and increase in hardness after first laser treatment, maintenance of this trend when machining using a higher laser pulse power, followed by an increase in penetration and decrease in hardness after additional laser treatment at lower power input, due to which a surface with fewer defects is obtained. The change in Young’s modulus follows the change in other mechanical properties, but not a change in roughness. Therefore, the observed hardening with the increase of the laser pulse power and then a small softening with the use of additional treatment with lower power can be attributed to some processes of remelting, diffusion and crystallization, sensitive to the previous surface state and heat energy flux. Despite that, the laser treatment always caused a significant hardening of the surface layer.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3