Microstructural Evolution and Surface Mechanical Properties of the Titanium Alloy Ti-13Nb-13Zr Subjected to Laser Shock Processing

Author:

Wu JiajunORCID,Lin Xingze,Qiao Hongchao,Zhao Jibin,Ding Wangwang,Zhu Ran

Abstract

As a progressive surface-hardening technology, laser shock processing (LSP) can enhance the mechanical properties and extend fatigue life for metallic components through laser-generated high-pressure plasma shock waves. In this work, LSP was used to treat titanium alloy Ti-13Nb-13Zr experimental coupons, and the microstructural response and surface mechanical properties of the Ti-13Nb-13Zr experimental coupons were investigated. After the LSP treatment, the X-ray diffraction (XRD) peaks were shifted without any new phase formation. The surface roughness of the experimental coupons increased, which can be explained by the LSP-induced severe plastic deformation. The LSP treatment effectively enhanced the surface compressive residual stress of Ti-13Nb-13Zr. Meanwhile, the microhardness of the Ti-13Nb-13Zr was also obviously increased after the LSP treatment. The experimental results also showed that the number of shocks times is an important factor in the improvement of surface mechanical properties. LSP treatment with multiple shocks can lead to more severe plastic deformation. The surface roughness, surface compressive residual stress and microhardness of the Ti-13Nb-13Zr experimental coupons shocked three times are higher than those after one shock. What is more, grain refinement accounts for the mechanical properties’ enhancements after the LSP treatment.

Funder

Scientific Research Foundation of Shantou University

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference33 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3