Curriculum Modelling and Learner Simulation as a Tool in Curriculum (Re)Design

Author:

McEneaney JohnORCID,Morsink PaulORCID

Abstract

Learning analytics (LA) provides tools to analyze historical data with the goal of better understanding how curricular structures and features have impacted student learning. Forward-looking curriculum design, however, frequently involves a degree of uncertainty. Historical data may be unavailable, a contemplated modification to curriculum may be unprecedented, or we may lack data regarding particular learner populations. To address this need, we propose using curriculum modelling and learner simulation (CMLS), which relies on well-established modelling theory and software to represent an existing or contemplated curriculum. The resulting model incorporates relevant research-based principles of learning to individually simulate learners and estimate their learning achievement as they move through the modelled curriculum. Results reflect both features of the curriculum (e.g., time allocated to different learning outcomes), learner profiles, and the natural variability of learners. We describe simulations with two versions of a college-level curriculum, explaining how results from simulations informed curriculum redesign work. We conclude with commentary on generalizing these methods, noting both theoretical and practical benefits of CMLS for curriculum (re)design.

Publisher

Society for Learning Analytics Research

Subject

Computer Science Applications,Education

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Curriculum analytics in higher education institutions: a systematic literature review;Journal of Computing in Higher Education;2024-08-23

2. Gaining Insights into Group-Level Course Difficulty via Differential Course Functioning;Proceedings of the Eleventh ACM Conference on Learning @ Scale;2024-07-09

3. Bayesian Generative Modelling of Student Results in Course Networks;Journal of Learning Analytics;2023-12-15

4. Monolayer Network Representation and Analysis of the Curriculum;Lecture Notes in Networks and Systems;2023

5. Using TOSCA language to model personalized educational content: Introducing eduTOSCA;Proceedings of the 26th Pan-Hellenic Conference on Informatics;2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3