A Compensator Microelectromechanical Acceleration Transducer with a Piezoelectric Sensing Element and Optical Reading

Author:

Busurin V. I.1ORCID,Korobkov K. A.1ORCID,Zaw Lwin Htoo1ORCID

Affiliation:

1. Moscow Aviation Institute (National Research University)

Abstract

Introduction. Modern mobile control objects require the use of highly sensitive transducers of motion parameters, e.g., acceleration, with a wide measurement range. Increased sensitivity to measured parameters can be achieved by using precision optics, e.g., based on the tunneling effect. However, operating ranges of induced movements are less than a micrometer, which creates difficulties in positioning the sensing element. In order to improve manufacturability, to extend the measurement range and to reduce errors of acceleration transducers with optical tunneling, compensation circuits with a piezoelectric actuator as an active sensor can be used.Aim. To extend the measurement range of microelectromechanical acceleration transducers through the use of an integrated approach, including the introduction of a compensation circuit for sensor movements based on the inverse piezoelectric effect and detection of these movements by optical means.Materials and methods. An approach to compensating sensor movements is proposed. This approach consists in using a bimorph piezoelectric plate as an inertial element. The use of optical reading of sensor sub-micrometer displacements is considered.Results. A block scheme and a functional scheme of a compensator micro-opto-electromechanical acceleration transducer with a bimorph piezoelectric sensing element are developed. Deformations in the sensing element under the influence of accelerations (up to 100 m/s2) and compensation voltages, whose amplitude does not exceed several volts, are investigated to ensure the possibility of using the optical tunneling effect in the proposed transducer.Conclusion. A mathematical model of the transducer was developed and studied. A 2.5-fold increase in the  measurement range was achieved. It was shown that the introduction of compensation feedback does not decrease the permissible frequency range of measured accelerations.

Publisher

St. Petersburg Electrotechnical University LETI

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3