Author:
Trocha Lidia K,Stobienia Olgierd
Abstract
The purpose of this study was to examine the effects of oxidative stress caused by hydroperoxide (H(2)O(2)) in the presence of iron ions (Fe(2+)) on mitochondria of the amoeba Acanthamoeba castellanii. We used isolated mitochondria of A. castellanii and exposed them to four levels of H(2)O(2) concentration: 0.5, 5, 15, and 25 mM. We measured basic energetics of mitochondria: oxygen consumption in phosphorylation state (state 3) and resting state (state 4), respiratory coefficient rates (RC), ADP/O ratios, membrane potential (DeltaPsi(m)), ability to accumulate Ca(2+) , and cytochrome c release. Our results show that the increasing concentrations of H(2)O(2) stimulates respiration in states 3 and 4. The highest concentration of H(2)O(2) caused a 3-fold increase in respiration in state 3 compared to the control. Respiratory coefficients and ADP/O ratios decreased with increasing stress conditions. Membrane potential significantly collapsed with increasing hydroperoxide concentration. The ability to accumulate Ca(2+) also decreased with the increasing stress treatment. The lowest stress treatment (0.5 mM H(2)O(2)) significantly decreased oxygen consumption in state 3 and 4, RC, and membrane potential. The ADP/O ratio decreased significantly under 5 mM H(2)O(2) treatment, while Ca(2+) accumulation rate decreased significantly at 15 mM H(2)O(2). We also observed cytochrome c release under increasing stress conditions. However, this release was not linear. These results indicate that as low as 0.5 mM H(2)O(2) with Fe(2+) damage the basic energetics of mitochondria of the unicellular eukaryotic organism Acanthamoeba castellanii.
Publisher
Polskie Towarzystwo Biochemiczne (Polish Biochemical Society)
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献