eco2AI: Carbon Emissions Tracking of Machine Learning Models as the First Step Towards Sustainable AI

Author:

Budennyy S. A.,Lazarev V. D.,Zakharenko N. N.,Korovin A. N.,Plosskaya O. A.,Dimitrov D. V.,Akhripkin V. S.,Pavlov I. V.,Oseledets I. V.,Barsola I. S.,Egorov I. V.,Kosterina A. A.,Zhukov L. E.

Abstract

Abstract— The size and complexity of deep neural networks used in AI applications continue to grow exponentially, significantly increasing energy consumption for training and inference by these models. We introduce an open-source package eco2AI to help data scientists and researchers to track the energy consumption and equivalent CO2 emissions of their models in a straightforward way. In eco2AI we focus on accurate tracking of energy consumption and regional CO2 emissions accounting. We encourage the research for community to search for new optimal Artificial Intelligence (AI) architectures with lower computational cost. The motivation also comes from the concept of AI-based greenhouse gases sequestrating cycle with both Sustainable AI and Green AI pathways. The code and documentation are hosted on Github under the Apache 2.0 license https://github.com/sb-ai-lab/Eco2AI.

Publisher

Pleiades Publishing Ltd

Subject

General Mathematics

Reference48 articles.

1. Paris Agreement, in Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015, Paris). Retrieved December, HeinOnline (2015), Vol. 4, p. 2017.

2. L. F. W. Anthony, B. Kanding, and R. Selvan, “Carbontracker: Tracking and predicting the carbon footprint of training deep learning models,” arXiv preprint arXiv:2007.03051 (2020).

3. Apache License 2.0. https://www.apache.org/licenses/LICENSE-2.0

4. Carbontracker. https://github.com/lfwa/carbontracker

5. Cloud Carbon Footprint. https://github.com/cloud-carbon-footprint/cloud-carbon-footprint

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3