1. Akimov, N.P., Badaev, K.V., Gektin, Yu.M., Ryzhakov, A.V., Smelyanskii, M.B., and Frolov, A.G., Low-resolution multi-zone scanning instrument MSU-MR for the space information system “Meteor-M”. Operating principle, evolution, and prospects, Raketno-Kosm.
Prib. Inf. Sist., 2015, vol. 2, no. 4, pp. 30–39. https://doi.org/10.17238/issn2409-0239.2015.4.30
2. Andreev, A.I., Lotareva, Z.N., and Boroditskaya, A.V., PlanetaMeteorTexMaker, Certificate of the state registration of computer program no. 2018665185, Byull., 2018, December 3, 2018.
3. Andreev, A.I., Shamilova, Yu.A., and Kholodov, E.I., Using convolutional neural networks for cloud detection from Meteor-M No. 2 MSU-MR data, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 7, pp. 459–466.
4. Baker, N., Joint polar satellite system (JPSS) VIIRS sea ice characterization algorithm theoretical basis document (ATBD), NASA Goddard Space Flight Center: Greenbelt, Md., 2011.
5. Bloshchinskii, V.D., Kuchma, M.O., Andreev, A.I., High-precision neural networks for cloud and snow detection according to MSU-GS Electro-L satellite data, in Materialy 17-i Vserossiiskoi otkrytoi konferentsii “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (Proceedings of the 17th All-Russian Open Conference “Current Problems of Remote Sensing of the Earth from Space), Moscow: IKI RAN, 2019, p. 18.