1. Andreev, A.I., Shamilova, Yu.A., and Kholodov, E.I., Using convolutional neural networks for cloud detection from Meteor-M No. 2 MSU-MR data, Russ. Meteorol. Hydrol., 2019, vol. 44, no. 7, pp. 459–466. https://doi.org/10.3103/S106837391907004
2. Asarin, A.E., Balonishnikova, Zh.A., Bitkov, L.M., Bulygina, O.N., Bugrov, L.Yu., Vinogradova, V.V., Gavrilova, S.Yu., Ganyushkin, D.A., Ginzburg, A.I., Georgievskii, M.V., Glazovskii, A.F., Govorkova, V.A., Golovanov, O.F., Golod, M.P., Grebenets, V.I., et al., Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii (Second Assessment Report by Rosgidromet on Climate Changes and Their Consequences in the Territory of the Russian Federation) Moscow: Rosgidromet, 2014.
3. Born, M. and Wolf, E., Principles of Optics, Oxford: Pergamon, 1975.
4. Buras, R., Dowling, T., and Emde, C., New secondary-scattering correction in DISORT with increased efficiency for forward scattering, J. Quant. Spectrosc. Radiat. Transfer, 2011, vol. 112, no. 12, pp. 2028–2034. https://doi.org/10.1016/j.jqsrt.2011.03.019
5. Cox, C. and Munk, W., Statistics of the sea surface derived from sun glitter, J. Mar. Res., 1954, vol. 13, pp. 198–227.