1. Adler-Golden, S., Berk, A., Bernstein, L.S., Richtsmeier, S., Acharya, P.K., Matthew, M.W., Anderson, G.P., Allred, C.L., Jeong, L.S., and Chetwynd, J.H., FLAASH, a MODTRAN4 atmospheric correction package for hyperspectral data retrievals and simulations, Jet Propulsion Lab., 1998, vol. 1, pp. 9–14.
2. Akimov, N.P., Badaev, K.V., Gektin, Yu.M., Ryzhakov, A.V., Smelyanskii, M.B., and Frolov, A.G., MSU-MR multiband scanner of low spatial resolution for space-based Meteor-M informational system. Principle of operation and development prospects, Raketn.-Kosm. Priborostr. Inf. Sist., 2015, vol. 4, pp. 30–39. https://doi.org/10.17238/issn2409-0239.2015.4.30
3. Andreev, A.I., Shamilova, Yu.A., and Kholodov, E.I., Using convolutional neural networks for cloud detection from Meteor-M no. 2 MSU-MR data, Russ. Meteorol. Hydrol., 2019, vol. 44, pp. 459–466.
4. Bakhrushin, V.E., Methods for assessing the characteristics of nonlinear statistical relationships, Sist. Tekhnol., 2011, no. 2, pp. 9–14.
5. Belyaev, M.Yu., Belyaev, B.I., Ivanov, D.A., Katkovskiy, L.V., Martinov, A.O., Ryazantsev, V.V., Sarmin, E.E., Silyuk, O.O., and Shukaylo, V.G., Atmospheric correction of data registered on board the ISS. Part I. Methodology for spectra, Sovr. Probl. Dist. Zond. Zemli Kosmosa, 2018, vol. 15, no. 6, pp. 213–222. https://doi.org/10.21046/2070-7401-2018-15-6-213-222