Micro-, Meso- and Macrostructural Design of Bulk Metallic and Polymetallic Materials by Wire-Feed Electron-Beam Additive Manufacturing

Author:

Kolubaev E. A.,Rubtsov V. E.,Chumaevsky A. V.,Astafurova E. G.

Abstract

Abstract Additive manufacturing of metal materials is one of the most promising technologies in modern industry. A wide variety of current additive manufacturing techniques allow rapid prototyping and industrial production of different-sized products from various structural and functional materials. The structure and physical-mechanical properties of the metal products fabricated by electron-beam additive manufacturing (EBAM) within nonstationary metallurgy in a local molten pool often differ from those of the products fabricated by conventional metallurgy due to different crystallization mechanisms, sequence and completeness of phase transformations, and heterogeneous/homogeneous chemical composition of the resulting material. The possibility to control local metallurgical processes in the molten pool is the key advantage of the EBAM technology. It allows one to control the structure, composition, and properties of mono- and polymetallic, graded, composite and heat-resistant materials in order to obtain products with the desired chemical composition, macroscopic architecture, and microscopic structural parameters. As any new industrial technology, the EBAM method requires the development of scientifically based approaches to the choice of materials and production conditions. Here we provide an overview of the scientific approaches developed for electron-beam additive manufacturing of products from metals and alloys using wire or rods as a feedstock. The range of the studied materials includes additive materials based on copper, bronze, aluminum, nickel, titanium alloys, and different steels, as well as aluminum-based functionally graded materials and copper-based graded materials. The most important research findings are summarized.

Publisher

Pleiades Publishing Ltd

Subject

Surfaces and Interfaces,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3