Effect of “ColdArc” WAAM Regime and Arc Torch Weaving on Microstructure and Properties of As-Built and Subtransus Quenched Ti-6Al-4V

Author:

Zykova Anna1,Savchenko Nikolai1ORCID,Nikolaeva Aleksandra1,Panfilov Aleksander1ORCID,Vorontsov Andrey1ORCID,Semenchuk Vyacheslav1ORCID,Gurianov Denis1ORCID,Kolubaev Evgeny1,Tarasov Sergei1ORCID

Affiliation:

1. Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS, pr. Academicheskiy, 2/4, Tomsk 634055, Russia

Abstract

Defect-free thin-walled samples were built using wire arc additive manufacturing (WAAM) combined with the “coldArc” deposition technique by feeding a Ti-6Al-4V welding wire and using two deposition strategies, namely with and without the welding torch weaving. The microstructures formed in these samples were examined in relation to mechanical characteristics. The arc torch weaving at 1 Hz allowed us to interfere with the epitaxial growth of the β-Ti columnar grains and, thus, obtain them a lower aspect ratio. Upon cooling, the α/α′+β structure was formed inside the former β-Ti grains, and this structure proved to be more uniform as compared to that of the samples built without the weaving. The subtransus quenching of the samples in water did not have any effect on the structure and properties of samples built with the arc torch weaving, whereas a more uniform grain structure was formed in the sample built without weaving. Quenching resulted also in a reduction in the relative elongation by 30% in both cases.

Funder

Government research assignment for ISPMS SB RAS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3