Author:
Marakushev S. A.,Belonogova O. V.
Abstract
Abstract
On the basis of biomimetic, phylometabolic, and thermodynamic analysis of modern CO2 assimilation pathways, a paleophenotypic reconstruction of ancient autotrophic metabolism systems was carried out. As a chemical basis for CO2 fixation paleometabolism, metabolic networks capable of self-reproduction and evolution are considered, and the reversibility of the transformation reactions of its intermediates is the most important factor in self-development of this network. The substances of the C–H–O system, paragenetically associated with hydrocarbons, create a phase space, which is a set of universal intermediates of the autotrophic paleometabolism chemical network. The concept of two strategies for the origin and development of autotrophic carbon fixation paleometabolism in the oxidized (CO2) and reduced (CH4) redox regimes of degassing of the ancient Earth is proposed. It was shown that P, T, and the redox conditions of hydrothermal systems of the early Archean were favorable for the development of primary methanotrophic metabolism.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献