Mathematical Modeling of a Self-Learning Neuromorphic Network Based on Nanosized Memristive Elements with a 1T1R-Crossbar-Architecture
-
Published:2021-12
Issue:8
Volume:50
Page:628-637
-
ISSN:1063-7397
-
Container-title:Russian Microelectronics
-
language:en
-
Short-container-title:Russ Microelectron
Author:
Morozov A. Yu.ORCID, Abgaryan K. K.ORCID, Reviznikov D. L.ORCID
Publisher
Pleiades Publishing Ltd
Subject
Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Reference27 articles.
1. Wong, H.-S.P., Lee, H.Y., Yu, S., Chen, Y.S., Wu, Y., Chen, P.S., Lee, B., and Frederic, T., Metal-oxide RRAM, Proc. IEEE, 2012, vol. 100, no. 6, pp. 1951–1970. https://doi.org/10.1109/JPROC.2012.2190369 2. Yang, J.J., Strukov, D.B., and Stewart, D.R., Memristive devices for computing, Nat. Nanotechnol., 2013, vol. 8, no. 1, pp. 13–24. https://doi.org/10.1038/nnano.2012.240 3. Li, C., Hu, M., Li, Y., Jiang, H., Ge, N., Montgomery, E., Zhang, J., Song, W., Dávila, N., Graves, C.E., Li, Z., Strachan, J.P., Lin, P., Wang, Z., Barnell, M., Wu, Q., Williams, R.S., Yang, J.J., and Xia, Q., Analogue signal and image processing with large memristor crossbars, Nat. Electron., 2018, vol. 1, no. 1, pp. 52–59. https://doi.org/10.1038/s41928-017-0002-z 4. Hu, M., Graves, C.E., Li, C., Li, Y., Ge, N., Montgomery, E., Davila, N., Jiang, H., Williams, R.S., Yang, J.J., Xia, O., and Strachan, J.P., Memristor-based analog computation and neural network classification with a dot product engine, Adv. Mater., 2018, vol. 30, no. 9, p. 1705914. https://doi.org/10.1002/adma.201705914 5. Morozov, A.Yu., Reviznikov, D.L., and Abgaryan, K.K., Issuues of implementing neural network algorithms on memristor crossbars, Izv. Vyssh. Uchebn. Zaved.,
Mater. Elektron. Tekh., 2019, vol. 22, no. 4, pp. 272–278. https://doi.org/10.17073/1609-3577-2019-4-272-278
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|