Issues of implementing neural network algorithms on memristor crossbars

Author:

Morozov A. Yu.1ORCID,Reviznikov D. L.1ORCID,Abgaryan K. K.1ORCID

Affiliation:

1. Federal Research Centre “Information and Control” of the Russian Academy of Sciences, 44 Vavilov Str., Moscow 119333, Russia; Moscow Aviation Institute (National Research University), 4 Volokolamskoe shosse, 4, Moscow, 125993, Russia

Abstract

The property of natural parallelization of matrix-vector operations inherent in memristor crossbars creates opportunities for their effective use in neural network computing. Analog calculations are orders of magnitude faster in comparison to calculations on the central processor and on graphics accelerators. Besides, mathematical operations energy costs are significantly lower. The essential feature of analog computing is its low accuracy. In this regard, studying the dependence of neural network quality on the accuracy of setting its weights is relevant. The paper considers two convolutional neural networks trained on the MNIST (handwritten digits) and CIFAR_10 (airplanes, boats, cars, etc.) data sets. The first convolutional neural network consists of two convolutional layers, one subsample layer and two fully connected layers. The second one consists of four convolutional layers, two subsample layers and two fully connected layers. Calculations in convolutional and fully connected layers are performed through matrix-vector operations that are implemented on memristor crossbars. Sub-sampling layers imply the operation of finding the maximum value from several values. This operation can be implemented at the analog level. The process of training a neural network runs separately from data analysis. As a rule, gradient optimization methods are used at the training stage. It is advisable to perform calculations using these methods on CPU. When setting the weights, 3—4 precision bits are required to obtain an acceptable recognition quality in the case the network is trained on MNIST. 6-10 precision bits are required if the network is trained on CIFAR_10.

Publisher

National University of Science and Technology MISiS

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3