Subject
Computational Mathematics
Reference7 articles.
1. A. D. Bruno, “Asymptotic Behavior and Expansions of Solutions of an Ordinary Differential Equation,” Russ. Math. Surv. 59, 429–480 (2004).
2. A. D. Bruno, “Space Power Geometry for an ODE and Painlevé Equations,” International Conference on Painlevé Equations and Related Topics, St. Petersburg, June. 2011 (St. Petersburg, 2011), pp. 36–41; http://www.pdmi.ras.ru/EIMI/2011/PC/proceedings.pdf .
3. A. D. Bruno, “Power-Exponential Expansions of Solutions to an Ordinary Differential Equation,” Dokl. Math. 85, 336–340 (2012).
4. A. D. Bruno, Preprint No. 60, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2011); http://www.keldysh.ru/papers/2011/source/prep2011-60.pdf .
5. A. D. Bruno, “Space Power Geometry for One ODE and P 1-P 4, P 6,” Painlevé Equations and Related Topics, Ed. by A.D. Bruno and A.B. Batkhin (Walter de Gruyter, Berlin/Boston, 2012), pp. 41–51.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On Complicated Expansions of Solutions to ODES;Computational Mathematics and Mathematical Physics;2018-03
2. Elements of Nonlinear Analysis;Springer Proceedings in Mathematics & Statistics;2018
3. Power Geometry and Elliptic Expansions of Solutions to the Painlevé Equations;International Journal of Differential Equations;2015