Affiliation:
1. Keldysh Institute of Applied Mathematics, Miusskaya Square 4, Moscow 125047, Russia
Abstract
We consider an ordinary differential equation (ODE) which can be written as a polynomial in variables and derivatives. Several types of asymptotic expansions of its solutions can be found by algorithms of 2D Power Geometry. They are power, power-logarithmic, exotic, and complicated expansions. Here we develop 3D Power Geometry and apply it for calculation power-elliptic expansions of solutions to an ODE. Among them we select regular power-elliptic expansions and give a survey of all such expansions in solutions of the Painlevé equationsP1,…,P6.
Subject
Applied Mathematics,Analysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献