1. R. Baker, “‘Lebesgue measure’ on $$\mathbb R^{\infty }$$,” Proc. Am. Math. Soc. 113 (4), 1023–1029 (1991).
2. V. I. Bogachev, Gaussian Measures (Nauka, Moscow, 1997). Engl. transl.: Gaussian Measures (Am. Math. Soc., Providence, RI, 1998), Math. Surv. Monogr. 62.
3. V. I. Bogachev, Foundations of Measure Theory (Regulyarnaya i Khaoticheskaya Dinamika, Moscow, 2006), Vol. 1. Engl. transl.: Measure Theory (Springer, Berlin, 2007), Vol. 1.
4. V. I. Bogachev and O. G. Smolyanov, Real and Functional Analysis: A University Course (Inst. Komp’yut. Issled., Moscow, 2011). Engl. transl.: Real and Functional Analysis (Springer, Cham, 2020), Moscow Lect. 4.
5. V. M. Busovikov and V. Zh. Sakbaev, “Sobolev spaces of functions on a Hilbert space endowed with a translation-invariant measure and approximations of semigroups,” Izv. Math. 84 (4), 694–721 (2020) [transl. from Izv. Ross. Akad. Nauk, Ser. Mat. 84 (4), 79–109 (2020)].