Author:
Melnikova A. A.,Deryugina N. N.
Subject
General Mathematics,Analysis
Reference25 articles.
1. Wu, S.L. and Zhao, H.Q., Traveling fronts for a delayed reaction-diffusion
system with a quiescent stage, Commun. Nonlin. Sci. Numer.
Simul., 2011, vol. 16, no. 9, pp. 3610–3621.
2. Larralde, H., Araujo, M., and Havlin, S., Diffusion-reaction kinetics for
$$A+B-C
$$ for one-dimensional systems with initially
separated reactants, Phys. Rev. A, 1992, vol. 46, no. 10,
pp. 855–859.
3. Kessler, D. and Levine, H., Fluctuation-induced diffusive instabilities,Nat. Mater., 1998, vol. 394,
pp. 556–558.
4. Prum, R.O. and Williamson, S., Reaction-diffusion models of within-feather
pigmentation patterning, Proc. R. Soc. B. Biol. Sci.,
2002, vol. 269, no. 1493, pp. 781–792.
5. Sidorova, A.E., Levashova, N.T., Semina, A.E., and Melnikova, A.A., The
application of a distributed model of active media for the analysis of urban ecosystems
development, Math. Biol. Bioinf., 2018, vol. 13, no. 2,
pp. 454–465.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献