Existence and Stability of a Stationary Solution in a Two-Dimensional Reaction-Diffusion System with Slow and Fast Components

Author:

Nefedov N. N.1,Kotsubinsky K. A.1

Affiliation:

1. Lomonosov Moscow State University

Abstract

In the paper, the existence of a stable stationary solution in a reaction-diffusion system with slow and fast components in a two-dimensional spatial variable case is investigated. The theorem of the existence of a stationary solution with boundary layers in the case of Dirichlet boundary conditions is proven, its asymptotic approximation is constructed, and conditions for Lyapunov asymptotic stability of this solution are obtained. The research is based on the asymptotic method of differential inequalities, applied to a new class of problems. This result is practically important both for various applications described by similar systems and for the application of numerical stationing methods when solving elliptical boundary value problems.

Publisher

Moscow University Press

Reference14 articles.

1. Butuzov V.F., Nefedov N.N., Schneider K.R. // Journal of Mathematical Sciences. 121:1. 1973 (2004).

2. Тихонов А.Н. // Матем. сб. 31(73):3 575 (1952).

3. Васильева А.Б., Бутузов В.Ф. Асимптотические разложения решений сингулярно возмущенных уравнений. М.: Наука, 1973.

4. Melnikova A.A., Deryugina N.N. // Differential Equations. 56:4. 462 (2020).

5. Melnikova A.A., Derugina N.N. // Moscow Univ. Phys. Bull. 73, N 3. 284 (2018)).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3