Quantitative Evaluation of Elastic Properties of Nano-Crystalline Nickel Using Atomic Force Acoustic Microscopy

Author:

Kopycinska-Müller M.,Caron A.,Hirsekorn S.,Rabe U.,Natter Harald,Hempelmann Rolf,Birringer Rainer,Arnold Walter

Abstract

Atomic force acoustic microscopy (AFAM) is a near-field technique, where the vibration behavior of a micro-fabricated elastic cantilever beam in contact with a sample surface is sensitive to its local elastic properties. The resolution of this technique is given by the contact radius a c of the atomic force microscope sensor-tip on the sample surface. Taking into account only the Hertzian forces, a c depends on the static load applied by the cantilever, on the elastic constants of the tip and the sample and on the geometry of the contacting bodies. The shape of the sensor tip used in atomic force acoustic microscopy is between a sphere and a flat punch. Hence a c extends from just below 10nm to a few tens of nanometers. In this review, we give an overview of the AFAM technique, present data on the indentation moduli of nanocrystalline nickel, and discuss some of the error sources in quantitative AFAM. The AFAM indentation moduli measured are comparable to the values obtained by nanoindentation and lower than the indentation moduli calculated from ultrasonic velocity measurements. There seems to be a decrease of the indentation modulus with decreasing grain size for grain sizes below 30nm. The data are discussed taking into account X-ray diffraction and electron back-scattering data revealing some texture and macro-strain due to internal stresses in the samples investigated.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3