Author:
Pust Sascha E.,Maier Wiebke,Wittstock Gunther
Abstract
AbstractScanning electrochemical microscopy (SECM) has developed into a very versatile tool for the investigation of solid-liquid, liquid-liquid and liquid-gas interfaces. The arrangement of an ultramicroelectrode (UME) in close proximity to the interface under study allows the application of a large variety of different experimental schemes. The most important have been named feedback mode, generation-collection mode, redox competition mode and direct mode. Quantitative descriptions are available for the UME signal, depending on different sample properties and experimental variables. Therefore, SECM has been established as an indispensible tool in many areas of fundamental electrochemical research. Currently, it also spreads as an important new method to solve more applied problems, in which inhomogeneous current distributions are typically observed on different length scales. Prominent examples include devices for electrochemical energy conversion such as fuel cells and batteries as well as localized corrosion phenomena. However, the direct local investigation of such systems is often impossible. Instead, suitable reaction schemes, sample environments, model samples and even new operation modes have to be introduced in order to obtain results that are relevant to the practical application. This review outlines and compares the theoretical basis of the different SECM working modes and reviews the application in the area of electrochemical energy conversion and localized corrosion with a special emphasis on the problems encountered when working with practical samples.
Subject
Physical and Theoretical Chemistry
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献