The effect of topological design on the degradation behavior of additively manufactured porous zinc alloy

Author:

Shi Yixuan,Xu Wei,Che HaodongORCID,Zhao Shangyan,Chang Weiwei,Li Xuan,Lu Yuchen,Xue Chenran,Zhang DaweiORCID,Wang Lu-Ning,Li YagengORCID

Abstract

AbstractThe advent of additively manufactured biodegradable porous metals presents a transformative opportunity to meet the criteria of ideal bone substitutes. Precisely tailoring their degradation behavior constitutes a pivotal aspect of this endeavor. In this study, we investigated the effects of topological designs on the degradation profile of laser powder bed fusion (LPBF) Zn scaffolds under dynamic in vitro immersion tests. Specifically, four types of Zn-0.4Mn-0.2Mg scaffolds (beam-based: diamond, face center cubic; surface-based: gyroid, schwarz-P) were designed and fabricated. The degradation mechanism of the scaffolds was comprehensively evaluated using both experimental and simulation methods. The results illuminate the profound impact of structural design on the degradation properties of the Zn alloy scaffolds. The beam-based diamond and face center cubic scaffolds exhibited a degradation rate of 0.08–0.12 mm per year with a relatively uniform degradation mode under dynamic immersion. On the contrary, the surface-based gyroid and Schwarz-P scaffolds demonstrated a notably reduced degradation rate due to lower permeability. This restricted the diffusion of medium ions within the pores, culminating in the accumulation of degradation products and more severe localized degradation. This study underscores the potential of topological design as a compelling strategy for tailoring the degradation profile of additively manufactured biodegradable scaffolds, thereby advancing their suitability as bone substitutes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3