Author:
Chang A.Y.,Bozzelli J.W.,Dean A.M.
Abstract
A method to predict temperature and pressure-dependent rate coefficients for complex bimolecular chemical activation and unimolecular dissociation reactions is described. A three-frequency version of QRRK theory is developed and collisional stabilization is estimated using the modified strong-collision approximation. The methodology permits analysis of reaction systems with an arbitrary degree of complexity in terms of the number of isomer or product channels. Specification of both high and low pressure limits is also provided. The chemically activated reaction of vinyl radical with molecular oxygen is used to demonstrate the approach. Subsequent dissociation of the stabilized vinyl peroxy radical is used to illustrate prediction of dissociation rate coefficients. These calculations confirm earlier results that the vinoxy + O channel is dominant under combustion conditions. The results are also consistent with RRKM results using the same input conditions. This approach provides a means to provide reasonably accurate predictions of the rate coefficients that are required in many detailed mechanisms. The major advantage is the ability to provide reasonable estimates of rate coefficients for many complex systems where detailed information about the transition states is not available. It is also shown that a simpler 1-frequency model appears adequate for high temperature conditions.
Subject
Physical and Theoretical Chemistry
Cited by
161 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献