Affiliation:
1. Department of Chemical Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA
2. The Wolfson Department of Chemical Engineering and Grand Technion Energy Program (GTEP) Technion – Israel Institute of Technology Haifa Israel
3. Department of Chemistry University of Colorado Boulder CO USA
4. Department of Chemical Engineering National Taiwan University Taipei Taiwan
5. School of Engineering Brown University Providence Rhode Island USA
6. Department of Chemical Engineering Northeastern University Boston Massachusetts USA
Abstract
AbstractThe open‐source statistical mechanics software described here, Arkane–Automated Reaction Kinetics and Network Exploration–facilitates computations of thermodynamic properties of chemical species, high‐pressure limit reaction rate coefficients, and pressure‐dependent rate coefficient over multi‐well molecular potential energy surfaces (PES) including the effects of collisional energy transfer on phenomenological kinetics. Arkane can use estimates to fill in information for molecules or reactions where quantum chemistry information is missing. The software solves the internal energy master equation for complex unimolecular reaction systems. Inputs to the software include converged electronic structure computations performed by the user using a variety of supported software packages (Gaussian, Molpro, Orca, TeraChem, Q‐Chem, Psi4). The software outputs high‐pressure limit rate coefficients and pressure‐dependent phenomenological rate coefficients, as well as computed thermodynamic properties (enthalpy, entropy, and constant pressure heat capacity) with added energy corrections. Some of the key features of Arkane include treatment of 1D, 2D or ND hindered internal rotation modes, treatment of free internal rotation modes, quantum tunneling effect consideration, transition state theory (TST) and Rice‐Ramsperger‐Kassel‐Marcus (RRKM) rate coefficient computations, master equation solution with four implemented methods, inverse‐Laplace transform of high‐pressure limit rate coefficients into the energy domain, energy corrections based on bond‐additivity or isodesmic reactions, automated and efficient PES exploration, and PES sensitivity analysis. The present work describes the design of Arkane, how it should be used, and refers to the theory that it employs. Arkane is distributed via the RMG‐Py software suite (https://github.com/ReactionMechanismGenerator/RMG‐Py).
Funder
U.S. Department of Energy
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Biochemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献