Aqueous-phase chemistry of the transactinides

Author:

Kratz Jens Volker

Abstract

AbstractThe experimental techniques developed to perform rapid chemical separations of the heaviest elements in the aqueous phase are presented. In general, these include transport of the nuclear reaction products to a separation device by the gas-jet technique and dissolution in an aqueous solution containing inorganic ligands for complex formation. The complexes are chemically characterized by a partition method which can be liquid–liquid extraction, ion-exchange- or reversed-phase extraction chromatography. The separated fractions are quickly evaporated to dryness for the preparation of samples forα-particle spectroscopy. Comments are given on the special situation in which chemistry has to be studied with single atoms. Theoretical predictions of chemical properties are compared to the presently known chemical behaviour of rutherfordium, Rf (element 104), dubnium, Db (element 105), seaborgium, Sg (element 106), and hassium, Hs (element 108) and to that of their lighter homologs in the Periodic Table in order to assess the role of relativistic effects in the chemistry of the heaviest elements.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radioelements;Nuclear and Radiochemistry;2021-10-08

2. Speeding up liquid-phase heavy element chemistry: Development of a vacuum to liquid transfer chamber (VLTC);Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2021-09

3. Actinides and Transactinides;Kirk‐Othmer Encyclopedia of Chemical Technology;2020-09-21

4. From SRAFAP to ARCA and AIDA – developments and implementation of automated aqueous-phase rapid chemistry apparatuses for heavy actinides and transactinides;Radiochimica Acta;2019-04-11

5. Exploring the chemical nature of super-heavy main-group elements by means of efficient plane-wave density-functional theory;Physical Chemistry Chemical Physics;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3