From SRAFAP to ARCA and AIDA – developments and implementation of automated aqueous-phase rapid chemistry apparatuses for heavy actinides and transactinides

Author:

Schädel Matthias1,Nagame Yuichiro2

Affiliation:

1. GSI Helmholtzzentrum für Schwerionenforschung GmbH , 64291 Darmstadt , Germany

2. Advanced Science Research Center, Japan Atomic Energy Agency (JAEA) , Tokai-mura, Ibaraki 319-1195 , Japan

Abstract

Abstract The development of automated rapid chemistry techniques and their application for batch-wise, chromatographic separations of heavy elements in the liquid-phase are outlined. Starting in the mid-1970s with manually performed separations using pressurized liquid-chromatography techniques, this development led to the first version of the Automated Rapid Chemistry Apparatus, ARCA, in the early 1980s. After a breakthrough to a much higher level of automation and miniaturization, the new apparatus ARCA II was built in the late 1980s. Based on it, the Automated Ion-exchange separation apparatus coupled with the Detection system for Alpha spectroscopy, AIDA, became operational in the late 1990s. In the context of technical and technological advancements, this article discusses the successful application of these instruments for (i) the search for superheavy elements, (ii) cross section measurements of actinide elements produced in multi-nucleon transfer reactions with actinide targets, (iii) chemical separation and characterization of the heavy actinides mendelevium, Md, and lawrencium, Lr, and (iv) studies of the transactinide elements rutherfordium, Rf, dubnium, Db, and seaborgium, Sg. Details of the separations are outlined together with the big advancements made over time and the limitations reached. For the transactinide elements, examples are given for their observed chemical behavior; often affected by an interplay between hydrolysis and complex formation. Influenced by relativistic effects, chemical properties of these elements sometimes deviated from those of their lighter homologs in the Periodic Table.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3