NMR and FT-IR Studies on the Association of Derivatives of Thymidine, Adenosine, and 6-N-Methyl-Adenosine in Aprotic Solvents

Author:

Koeppe Benjamin,Nibbering Erik T. J.1,Tolstoy Peter M.2

Affiliation:

1. Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Berlin, Deutschland

2. St. Petersburg State University, V. A. Fock Institute of Physics, St. Petersburg, Russische Föderation

Abstract

Abstract Associates of 3',5'-O-TBDMS protected derivatives of the 2'-deoxy forms of the nucleosides adenosine, 6-N-methyl-adenosine and thymidine (henceforward simply addressed by their parents' names) and further model systems in dichloromethane and Freon (CDClF2/CDF3) solutions are studied at low temperatures by 1H NMR and FT-IR spectroscopy. N⋯N distances in hydrogen bonds are estimated from chemical shifts of protons in hydrogen bonds employing geometric and spectroscopic hydrogen bond correlations. These distances are in turn employed to derive N–H stretching frequencies from IR spectroscopic hydrogen bond correlations which may be compared to corresponding experimental results. Three isomeric hydrogen bonded dimers of thymidine are characterized in Freon solution at 120 K. Binary associates of thymidine and a series of pyridines are studied; estimated N⋯N distances in the range of 3.08 to 2.85 Å are qualitatively correlated to shifts of N–H stretching bands where in all cases considerable contributions are found in the spectral region below 3000 cm-1. For adenosine, three isomeric binary associates with 4-nitrophenol are found allowing for an assessment of site-specific acceptor capabilities. In associates of thymidine and adenosine, Watson-Crick and Hoogsteen type 1:1 associates (estimated N⋯N distances of 2.85 and 2.90 Å) as well as 2:1 associates bearing only marginally longer H-bonds could be characterized. Two 1:1 associates between thymidine and 6-N-methyl-adenosine are described that are exclusively bonded via N–H⋯N bridges of about 2.97 and 3.08 Å for Watson-Crick and Hoogsteen sites, respectively, which leads to the conclusion that cooperative effects among coupled N–H⋯O and N–H⋯N hydrogen bonds in A-T base pairs are significant as formation of the N–H⋯O bond induces a contraction of around 0.15 Å in the neighboring N–H⋯N bond.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3