Automated Peritoneal Dialysis Prescriptions for Enhancing Sodium and Fluid Removal: A Predictive Analysis of Optimized, Patient-Specific Dwell Times for the Day Period

Author:

Akonur Alp1,Guest Steven2,Sloand James A.2,Leypoldt John K.2

Affiliation:

1. Baxter Healthcare Corporation, Medical Products R&D (Innovation), Deerfield, Illinois, USA

2. Round Lake, and Medical Products (Renal), Deerfield, Illinois, USA

Abstract

Background Remaining edema-free is a challenge for many automated peritoneal dialysis (APD) patients, especially those with fast (“high”) transport characteristics. Although increased use of peritoneal dialysis (PD) solutions with high glucose concentrations may improve volume control, frequent use of such solutions is undesirable. Methods We used the 3-pore kinetic model to evaluate 4 alternative therapy prescriptions for the APD day exchange in anuric patients with high, high-average, and low-average transport characteristics. Four prescriptions were modeled: Therapy 1: Optimal, individualized dwell times with a dry period Therapy 2: Use of a midday exchange Therapy 3: Use of an icodextrin-containing dialysate during a 14-hour dwell Therapy 4: Use of optimal, individualized dwell times, followed by an icodextrin dwell to complete the daytime period The alternative therapies were compared with a reference standard therapy using glucose solution during a 14-hour dwell. The nighttime prescription was identical in all cases (10 L over 10 hours), and all glucose solutions contained 2.27% glucose. Net ultrafiltration (UF), sodium removal (NaR), total carbohydrate (CHO) absorption, and weekly urea Kt/V for a 24-hour period were computed and compared. Results The UF and NaR were substantially higher with therapy 1 than with standard therapy (1034 mL vs 621 mL and 96 mmol vs 51 mmol respectively), without significant changes in CHO absorption or urea Kt/V. However, therapy 1 resulted in reduced β2-microglobulin clearance (0.74 mL/min vs 0.89 mL/min with standard therapy). Compared with therapy 1, therapy 2 improved UF and NaR (1062 mL vs 1034 mL and 99 mmol vs 96 mmol); however, that improvement is likely not clinically significant. Therapy 2 also resulted in a higher Kt/V (2.07 vs 1.72), but at the expense of higher glucose absorption (difference: 42 g). The UF and NaR were highest with a long icodextrin-containing daytime dwell either preceded by a short optimized dwell (1426 mL and 155 mmol) or without such a dwell (1327 mL and 148 mmol). Conclusions The 3-pore model predictions revealed that patient-specific optimal dwell times and regimens with a longer day dwell might provide improved UF and NaR options in APD patients with a variety of peritoneal membrane transport characteristics. In patients without access to icodextrin, therapy 1 might enhance UF and NaR and provide a short-term option to increase fluid removal. Although that approach may offer clinicians a therapeutic option for the overhydrated patient who requires increased UF in the short term, APD prescriptions including icodextrin provide a means to augment sodium and fluid removal. Data from clinical trials are needed to confirm the predictions from this study.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3