TWO STAGES OF THE CENOZOIC ALKALINE-BASALT VOLCANISM IN THE DARKHAD DEPRESSION (NORTHERN MONGOLIA) – GEOCHRONOLOGY, GEOCHEMISTRY, AND GEODYNAMIC CONSEQUENCES

Author:

Tsypukova S. S.1,Perepelov A. B.1,Demonterova E. I.2,Ivanov A. V.2,Dril S. I.1,Kuzmin M. I.1,Travin A. V.3,Shcherbakov Yu. D.1,Puzankov M. Yu.4,Kanakin S. V.5

Affiliation:

1. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences

2. Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

3. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

4. Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences

5. Dobretsov Geological Institute, Siberian Branch of the Russian Academy of Sciences

Abstract

The isotopic data showed that there are two stages distinguished in the Cenozoic history of the Darkhad depression volcanic activity, the Late Oligocene initial stage (~28.0–26.6 Ma) and the final Late Miocene – Early Pliocene stage (~5.8–4.2 Ma). It has been stated that the rocks of the initial stage are only represented by trachybasalts; however, among the final-stage basaltoids there are series of shield-volcano hawaite-basanite-phonotephrite rocks and compex trachybasaltic "valley" lava flows, the formation of which is the last stage in the territorial volcanic evolution. It has been shown that the initial-stage trachybasaltic andesites are characterized by their enrichment of TiO2, P2O5, Sr, Zn, Ga and low concentrations of Al2O3, MnO, CaO, Sc and HREE (La/Yb=27.2–30.2). Basaltoids of the final stage have a similar rare-element distribution and show an increase in the contents of TiO2, Al2O3, P2O5, LILE, HFSE, Th, U and in the degree of fractionation of REE (La/Yb from 12.2 to 20.9) towards the rocks alkalinity enhancement. Modeling of eclogite, pyroxenite and peridotite melting processes in the La/Yb – Sm/Yb system shows that trachybasaltic andesite melts could be formed at ~7–8 % melting of eclogitic matter or at ~10–11 % melting of Grt-containing pyroxenites, with trachybasalt formed at ~3 % melting of Grt-containing peridotites. The composition distribution of rocks in coordinates (Mg# – Fe/Mn) indicates that the parental magmas are the initial-stage trachybasaltic andesite magmas as well as the Early Pliocene trachybasaltic "valley" lava flows. Sr, Nd, Pb isotope characteristics of the Darkhad depression basaltoids show significant shift of isotopic ratios in time towards the relatively enriched mantle as compared with the depleted MORB mantle. The initial formation of trachybasaltic andesite melts occurred in the Late Oligicene at the pre-rift stage of the territory development involving metasomatized mantle matter, with the pyroxenite or eclogite component contained in the magma formation source. The origin of trachybasalt magmas of the final stage is associated with the processes of decompression melting of peridotites in a weakly metasomatized lithospheric mantle at the rift stage of the Darkhad structure development.

Publisher

Institute of Earth's Crust, Siberian Branch of the Russian Academy of Sciences

Subject

Earth-Surface Processes,Geophysics,Geology,Economic Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3