Miocene Volcanism of the Baikal Rift Across the Boundary of the Siberian Craton: Evidence for Lithospheric Mantle Melting

Author:

Demonterova Elena I1ORCID,Ivanov Alexei V1,Savatenkov Valery M23ORCID,Chu Mei-Fei4,Panteeva Svetlana V1,Lee Hao-Yang5,Bindeman Ilya N6

Affiliation:

1. Siberian Branch of the Russian Academy of Sciences Institute of the Earth’s Crust, , Irkutsk, Russia

2. Russian Academy of Sciences Institute of Precambrian Geology and Geochronology, , Saint-Petersburg, Russia

3. Saint-Petersburg State University Institute of the Earth’s Sciences, , Saint-Petersburg, Russia

4. National Taiwan University Department of Geosciences, , Taipei, Taiwan

5. Academia Sinica Institute of Earth Sciences, , Taipei, Taiwan

6. University of Oregon Department of Earth Sciences, , USA

Abstract

Abstract Continental rifting is usually viewed in terms of two contrasting models of active and passive extension. The origin of the Baikal Rift, adjacent to the southern part of the Siberian Craton, has been described by both models in the past. It is expected that basaltic magmatism in an active model scenario should be primarily sourced from a mantle plume or plume-fed asthenosphere, whereas melting of the lithospheric mantle is expected to be a predominant source for magmatism in the passive model. In this paper, we focus on the Miocene volcanic rocks sampled along two 60-km-long profiles that cross the boundary between the Neoproterozoic Tuva-Mongolian massif and the Archean-Paleoproterozoic Siberian Craton. Most of the samples studied are trachybasalts. In terms of trace element concentrations normalised to primitive mantle, the lavas mimic oceanic island basalt-like patterns with troughs at Rb, Th–U, Pb, and Y, and peaks at Ba, Nb, Ta, K, and Sr. Moreover, similar trace element patterns to the studied samples are also observed for Miocene and Quaternary lavas located in the southwestern of the Baikal Rift, and adjacent regions of non-rifted Mongolia. According to the ratio of CaO to MgO, and TiO2/Al2O3 to SiO2, the compositions of the studied lavas coincide with experimental melts derived from mafic lithologies. Trace element data of samples suggest that garnet was a residual phase during partial melting. The Sr-Nd isotopic characteristics of the studied lavas are 87Sr/86Sr 0.70427–0.70469 and 143Nd/144Nd 0.51267–0.51284. They are identical to the coeval Miocene lavas of neighbouring volcanic fields, but they differ from the Quaternary lavas that extend to lower 87Sr/86Sr (0.7038–0.7044) with near identical 143Nd/144Nd. Isotopes of Hf for studied samples show values εHf = 6.0–7.7, except for the two samples taken within the boundary between two lithospheric blocks with εHf 4.6 and 4.8. The δ18O of olivine from lava samples is everywhere higher than that of the asthenospheric mantle and ranges from 5.5 to 6.4‰. Variations of δ18O versus Mg#, 87Sr/86Sr and εHf in the studied samples do not correlate, but do unequivocally rule out crustal assimilation. The isotopic variations are consistent with recycling of mafic crustal lithologies at mantle depths. Lavas from the Tuva-Mongolian massif and the Siberian Craton differ in lead isotopes by lower values of 206Pb/204Pb (< 17.785) and higher values of Δ8/4Pb (61–75) for on-cratonic samples and the reverse relationship for off-cratonic lava (> 17.785 and 55–61), respectively. The equation for Δ8/4Pb = [208Pb/204Pb-(1.209*(206Pb/204Pb) +15.627)] *100 is from Hart (Nature, 309, 753–757, 1984). The correlation of lead isotopes with the mafic recycled component, the sharp change of lead isotopic values at the cratonic boundary and decoupling of lead isotope ratios from other isotopic ratios lead us to suggest that the values of 206Pb/204Pb and Δ8/4Pb are associated with an ancient accessory mineral phase such as sulphide confined within the lithospheric mantle. The predominant role of the lithospheric sources in the formation of the Miocene volcanic rocks indicate that the volcanism of the Baikal Rift was caused by a passive tectonic process, rather than active rifting.

Funder

governmental assignment in terms of Project

Russian Academy of Sciences (SB RAS), Irkutsk, Russia

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3