Mobile Robot Path Planning in a Trajectory with Multiple Obstacles Using Genetic Algorithms

Author:

Rahmaniar WahyuORCID,Rakhmania Amalia Eka

Abstract

Path planning is an essential algorithm to help robots complete their task in the field quickly. However, some path planning algorithms are computationally expensive and cannot adapt to new environments with a distinctly different set of obstacles. This paper presents optimal path planning based on a genetic algorithm (GA) that is proposed to be carried out in a dynamic environment with various obstacles. First, the points of the feasible path are found by performing a local search procedure. Then, the points are optimized to find the shortest path. When the optimal path is calculated, the position of the points on the path is smoothed to avoid obstacles in the environment. Thus, the average fitness values and the GA generation are better than the traditional method. The simulation results show that the proposed algorithm successfully finds the optimal path in an environment with multiple obstacles. Compared to a traditional GA-based method, our proposed algorithm has a smoother route due to path optimization. Therefore, this makes the proposed method advantageous in a dynamic environment.

Publisher

Universitas Muhammadiyah Yogyakarta

Subject

Artificial Intelligence,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Automatic Path Follower Robot Using Matlab;2024 5th International Conference for Emerging Technology (INCET);2024-05-24

2. Hierarchical controller for obstacle avoidance task in WMRs considering actuators and power electronics subsystems: When artificial potential fields approach is used;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-03

3. A Hierarchical Framework for Dynamic Global Path Planning;2023 10th International Forum on Electrical Engineering and Automation (IFEEA);2023-11-03

4. Hybrid path planning based on adaptive visibility graph initialization and edge computing for mobile robots;Engineering Applications of Artificial Intelligence;2023-11

5. Path planning techniques for mobile robots: Review and prospect;Expert Systems with Applications;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3