Affiliation:
1. Институт солнечно-земной физики СО РАН
2. Institute of Solar Terrestrial Physics SB RAS
Abstract
The results presented in this review reflect the fundamentals of the modern understanding of the nature of the structure of the slow solar wind (SW) along the entire length from the Sun to the Earth's orbit. It is known that the source of the slow quasi-stationary SW on the Sun is the belt and the chains of coronal streamers The streamer belt encircles the entire Sun as a wave-like surface (skirt), representing a sequence of pairs of rays with increased brightness (plasma density) or two lines of rays located close to each other. Neutral line of the radial component of the solar global magnetic field goes along the belt between the rays of each of these pairs. The streamer belt extends in the heliosphere is as the heliospheric plasma sheet (HPS). Detailed analysis of data from Wind and IMP-8 satellites showed that HPS sections on the Earth orbit are registered as a sequence of diamagnetic tubes with high density plasma and low interplanetary magnetic field. They represent an extension of rays with increased brightness of the streamer belt near the Sun. Their angular size remains the same over the entire way from the Sun to the Earth's orbit. Each HPS diamagnetic tube has a fine internal structure on several scales, or fractality. In other words, diamagnetic tube is a set of nested diamagnetic tubes, whose angular size can vary by almost two orders of magnitude. These sequences of diamagnetic tubes that form the base of slow SW on the Earth's orbit has a more general name — diamagnetic structures (DS). In the final part of this article, a comparative analysis of several events was made, based on the results of this review. He made it possible to find out the morphology and nature of the origin of the new term “diamagnetic plasmoids” SW (local amplifications of plasma density), which appeared in several articles published during 2012–2018. The analysis carried out at the end of this article, for the first time, showed that the diamagnetic plasmoids SW are the small-scale component of the fractal diamagnetic structures of the slow SW, considered in this review.
Publisher
Infra-M Academic Publishing House
Subject
Space and Planetary Science,Atmospheric Science,Geophysics
Reference28 articles.
1. Еселевич М.В., Еселевич В.Г. Некоторые особенности пояса корональных стримеров в солнечной короне и на орбите Земли // Астрономический журнал. 2006а. T. 83, № 9. C. 837–852., Borrini G., Wilcox J.M., Gosling J.T., Feldman W.C. Wilcox J.M. Solar wind helium and hydrogen structure near the heliospheric current sheet; a signal of coronal streamer at 1 AU. J. Geophys. Res. 1981, vol. 86, pp. 4565.
2. Еселевич М.В., Еселевич В.Г. Проявление лучевой структуры пояса корональных стримеров в виде резких пиков концентрации плазмы солнечного ветра на орбите Земли // Геомагнетизм и аэрономия. 2006б. Т. 46, № 6. С. 811–824., Eselevich V.G., Fainshtein V.G. The heliospheric current sheet (HCS) and high-speed solar wind: interaction effects. Planetary Space Sci. 1991, vol. 39, pp. 737–744.
3. Михайловский А.Б. Теория плазменных неустойчивостей. М.: Атомиздат, 1970. Т. 1. 294 с., Eselevich V.G., Fainshtein V.G. On the existence of the heliospheric current sheet without a neutral line. Planetary Space Ssi. 1992, vol. 40, pp. 105.
4. Пархомов В.А., Бородкова Н.Л., Еселевич В.Г. и др. Особенности воздействия диамагнитной структуры солнечного ветра на магнитосферу Земли // Солнечно-земная физика. 2017. Т. 3, № 4. C. 47–62. DOI: 10.12737/szf-34201705., Eselevich M.V., Eselevich V.G. Some features of coronal streamer belt in the solar corona and in Earth’s orbit. Astronomicheskii Zhurnal [Astron. J.]. 2006a, vol. 83, no. 9, pp. 837–852. (In Russian).
5. Франк-Каменецкий Д.А. Лекции по физике плазмы. М.: Атомиздат, 1968. 288 с., Eselevich M.V., Eselevich V.G. Manifestation of radial structure of the coronal streamer belt as sharp peaks in the solar wind plasma density in Earth’s orbit. Geomagnetism and Aeronomy. 2006b, vol. 46, iss.6, pp. 710–782. DOI: 10.1134/ S0016793206060132.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献