Statistical analysis of microflares as observed by the 4–8 GHz spectropolarimeter

Author:

Zhdanov Dmitriy1,Altyntsev Alexander1,Meshalkina Nataliya1,Anfinogentov Sergey2

Affiliation:

1. Institute of Solar Terrestrial Physics SB RAS

2. Institute of Solar-Terrestrial Physics SB RAS

Abstract

Radio observations of weak events are one of the promising methods for studying energy release and non-thermal processes in the solar corona. The development of instrumental capabilities allows for radio observations of weak transient coronal events, such as quasi-stationary brightenings and weak flares of X-ray class B and below, which were previously inaccessible for analysis. We have measured the spectral parameters of microwave radiation for thirty weak solar flares with X-ray classes ranging from A to C1.5, using observations from the Badary Broadband Microwave Spectropolarimeter (BBMS). The spectra indicate that plasma heating is caused by the appearance of non-thermal electron fluxes, which can be detected by bursts of microwave radiation, predominantly with an amplitude ~5–6 solar flux units (SFU) at 4–5 GHz frequencies. One solar flux unit (SFU) of radio emission is equal to 10–22 W/(m•Hz). The range of low-frequency spectrum growth indices fα varies widely from α=0.3 to 15. The distribution of high-frequency decay indices is similar to the distributions of regular flares. One of the explanations for the appearance of large fα values is the Razin effect, which can influence the shape of the gyrosynchrotron spectrum during the generation of bursts in dense plasma under relatively weak magnetic fields. We have detected two events in which the appearance of non-thermal electrons led to the generation of narrowband bursts at frequencies near the double plasma frequency. SRH test trials have shown the potential for measuring the structure of flare sources with fluxes of the order of 1 SFU, indicating the high diagnostic potential of the radioheliograph for detecting acceleration processes in weak flare events and their localization in active regions.

Publisher

Infra-M Academic Publishing House

Subject

Space and Planetary Science,Atmospheric Science,Geophysics

Reference39 articles.

1. Altyntsev A.T., Meshalkina N.S., Fedotova A.Ya., Myshyakov I.I. Background microwave emission and microflares in young active region 12635. Astrophys. J. 2020a, vol. 905, iss. 2. P. 149. DOI: 10.3847/1538-4357/abc54f., Altyntsev A.T., Meshalkina N.S., Fedotova A.Ya., Myshyakov I.I. Background microwave emission and microflares in young active region 12635. Astrophys. J. 2020a, vol. 905, iss. 2. P. 149. DOI: 10.3847/1538-4357/abc54f.

2. Altyntsev A., Lesovoi S., Globa M., Gubin A., Kochanov A., Grechnev V., Ivanov E., Kobets V., Meshalkina N., et al. Multiwave Siberian Radoheliograph. Solar-Terr. Phys. 2020b, vol. 6, iss. 2, p. 30. DOI: 10.12737/stp-62202003., Altyntsev A., Lesovoi S., Globa M., Gubin A., Kochanov A., Grechnev V., Ivanov E., Kobets V., Meshalkina N., et al. Multiwave Siberian Radoheliograph. Solar-Terr. Phys. 2020b, vol. 6, iss. 2, p. 30. DOI: 10.12737/stp-62202003.

3. Altyntsev A., Meshalkina N., Myshyakov I. Coherent microwave emission as an indicator of non-thermal energy release at a coronal X-ray point. Solar-Terr. Phys. 2022, vol. 8, iss. 2, p. 3. DOI: 10.12737/stp-82202201., Altyntsev A., Meshalkina N., Myshyakov I. Coherent microwave emission as an indicator of non-thermal energy release at a coronal X-ray point. Solar-Terr. Phys. 2022, vol. 8, iss. 2, p. 3. DOI: 10.12737/stp-82202201.

4. Altyntsev A.T., Reid H., Meshalkina N.S., Myshyakov I.I., Zhdanov D.A. Temporal and spatial association between microwaves and type III bursts in the upper corona. Astronomy and Astrophysics. 2023, vol. 671, id. A30, p. 7. DOI: 10.1051/0004-6361/202244599., Altyntsev A.T., Reid H., Meshalkina N.S., Myshyakov I.I., Zhdanov D.A. Temporal and spatial association between microwaves and type III bursts in the upper corona. Astronomy and Astrophysics. 2023, vol. 671, id. A30, p. 7. DOI: 10.1051/0004-6361/202244599.

5. Battaglia M., Sharma R., Luo Y., Chen B., Yu S., Krucker S. Multiple electron ecceleration instances during a series of solar microflares observed simultaneously at X-rays and microwaves. Astrophys. J. 2021, vol. 922, no. 2, p. 134. DOI: 10.3847/1538-4357/ac2aa6., Battaglia M., Sharma R., Luo Y., Chen B., Yu S., Krucker S. Multiple electron ecceleration instances during a series of solar microflares observed simultaneously at X-rays and microwaves. Astrophys. J. 2021, vol. 922, no. 2, p. 134. DOI: 10.3847/1538-4357/ac2aa6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3