Auroras during extreme geomagnetic storms: Some features of mid-latitude aurora on February 11, 1958

Author:

Mikhalev Aleksandr1

Affiliation:

1. Institute of Solar Terrestrial Physics SB RAS

Abstract

This paper discusses peculiarities of the great mid-latitude aurora that occurred during the extreme magnetic storm on February 11, 1958. This mid-latitude aurora had unusual optical and spectral characteristics, among which, first of all, were very high (10⁵–10⁸ R) intensities of atomic oxygen [OI] 630.0 nm emission and an unusually high ratio of the intensities of two forbidden lines of oxygen [OI] 630.0 nm and 557.7 nm (I₆₃₀/I₅₅₇.₇). In some points, this ratio was as high as 10³–10⁴. Analysis of I₆₃₀ dynamics during other extreme geomagnetic storms and associated geophysical conditions and physical processes in Earth’s ionosphere and magnetosphere allows us to assume that great mid-latitude auroras are formed during intense substorms in main phases of magnetic storms. In order to interpret the observed features of the February 11, 1958 mid-latitude aurora, we propose to examine the mechanism of level [OI] ¹D selective filling in which reactions of resonance recharge of oxygen ions O⁺(²D)+O (³P)→O⁺(⁴S)+O(³P, ¹D) and/or reactions of oxygen atom and molecule collisions with excited components of odd nitrogen can be implemented.

Publisher

Infra-M Academic Publishing House

Reference40 articles.

1. Akasofu S.-I. The dynamic aurora. Scientific American. 1989, vol. 260, iss. 5, pp. 90–97., Akasofu S.-I. The dynamic aurora. Scientific American. 1989, vol. 260, iss. 5, pp. 90–97.

2. Akasofu S.-I. Relationship between geomagnetic storms and auroral/magnetospheric substorms: Early studies. Review. Front. Astron. Space Sci. Sec. Space Phys. 2020, vol. 7, pp. 1–16. DOI: 10.3389/fspas.2020.604755., Akasofu S.-I. Relationship between geomagnetic storms and auroral/magnetospheric substorms: Early studies. Review. Front. Astron. Space Sci. Sec. Space Phys. 2020, vol. 7, pp. 1–16. DOI: 10.3389/fspas.2020.604755.

3. Akasofu S., Chapman S. Large-scale auroral motions and polar magnetic disturbances – III: The aurora and magnetic storm of 11 February 1958. J. Atmos. Terr. Phys.1962, vol. 24, pp. 785–796. DOI: 10.1016/0021-9169(62)90199-X., Akasofu S., Chapman S. Large-scale auroral motions and polar magnetic disturbances – III: The aurora and magnetic storm of 11 February 1958. J. Atmos. Terr. Phys.1962, vol. 24, pp. 785–796. DOI: 10.1016/0021-9169(62)90199-X.

4. Berrilli F., Giovannelli L. The great aurora of 4 February 1872 observed by Angelo Secchi in Rome. J. Space Weather Space Clim. 2022, vol. 12, 3. DOI: 10.1051/ swsc/2021046., Berrilli F., Giovannelli L. The great aurora of 4 February 1872 observed by Angelo Secchi in Rome. J. Space Weather Space Clim. 2022, vol. 12, 3. DOI: 10.1051/ swsc/2021046.

5. Danilov A.D. Response of F region to geomagnetic disturbances. Geliogeofizicheskiye issledovaniya [Heligeophysical Res.]. 2013, iss. 5, pp. 1–33. (In Russian)., Danilov A.D. Response of F region to geomagnetic disturbances. Geliogeofizicheskiye issledovaniya [Heligeophysical Res.]. 2013, iss. 5, pp. 1–33. (In Russian).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3