Geometric Locations of Points Equally Distance from Two Given Geometric Figures. Part 4: Geometric Locations of Points Equally Remote from Two Spheres

Author:

Vyshnyepolskiy Vladimir1,Zavarihina E.2,Peh D.3

Affiliation:

1. Moscow Technological University

2. Moscow Aviation Institute (National Research University)

3. MIRAE — Russian Technological University

Abstract

The article deals with the geometric locations of points equidistant from two spheres. In all variants of the mutual position of the spheres, the geometric places of the points are two surfaces. When the centers of the spheres coincide with the locus of points equidistant from the spheres, there will be spheres equal to the half-sum and half-difference of the diameters of the original spheres. In three variants of the relative position of the initial spheres, one of the two surfaces of the geometric places of the points is a two-sheet hyperboloid of revolution. It is obtained when: 1) the spheres intersect, 2) the spheres touch, 3) the outer surfaces of the spheres are removed from each other. In the case of equal spheres, a two-sheeted hyperboloid of revolution degenerates into a two-sheeted plane, more precisely, it is a second-order degenerate surface with a second infinitely distant branch. The spheres intersect - the second locus of the points will be the ellipsoid of revolution. Spheres touch - the second locus of points - an ellipsoid of revolution, degenerated into a straight line, more precisely into a zero-quadric of the second order - a cylindrical surface with zero radius. The outer surfaces of the spheres are distant from each other - the second locus of points will be a two-sheet hyperboloid of revolution. The small sphere is located inside the large one - two coaxial confocal ellipsoids of revolution. In all variants of the mutual position of spheres of the same diameters, the common geometrical place of equidistant points is a plane (degenerate surface of the second order) passing through the middle of the segment perpendicular to it, connecting the centers of the original spheres. The second locus of points equidistant from two spheres of the same diameter can be either an ellipsoid of revolution (if the original spheres intersect), or a straight (cylindrical surface with zero radius) connecting the centers of the original spheres when the original spheres touch each other, or a two-sheet hyperboloid of revolution (if continue to increase the distance between the centers of the original spheres).

Publisher

Infra-M Academic Publishing House

Reference37 articles.

1. Александров И.И. Сборник геометрических задач на построение с решениями [Текст] / И.И. Александров – М.: УРСС 2004. – 176 с., Aleksandrov I.I. Sbornik geometricheskih zadach na postroenie s resheniyami [Tekst] / I.I. Aleksandrov – M.: URSS 2004. – 176 s.

2. Антонова И.В. Математическое описание частного случая квазивращения фокуса эллипса вокруг эллиптической оси [Текст] / И.В. Антонова, Е.В. Соломонова, Н.С. Кадыкова // Геометрия и графика. — 2021. — Т. 9. — №. 1. — С. 39-45. — DOI: 10.12737/2308-4898-2021-9-1-39-45., Antonova I.V. Matematicheskoe opisanie chastnogo sluchaya kvazivrascheniya fokusa ellipsa vokrug ellipticheskoy osi [Tekst] / I.V. Antonova, E.V. Solomonova, N.S. Kadykova // Geometriya i grafika. — 2021. — T. 9. — №. 1. — S. 39-45. — DOI: 10.12737/2308-4898-2021-9-1-39-45.

3. Волков В.Я. Курс начертательной геометрии на основе геометрического моделирования. Учебник [Текст] / В.Я. Волков – Омск: СибАДИ, 2010. – 252с., Volkov V.Ya. Kurs nachertatel'noy geometrii na osnove geometricheskogo modelirovaniya. Uchebnik [Tekst] / V.Ya. Volkov – Omsk: SibADI, 2010. – 252s.

4. Волков В.Я. Сборник задач и упражнений по начертательной геометрии (к учебнику «Курс начертательной геометрии на основе геометрического моделирования») [Текст] / В.Я. Волков, В.Ю. Юрков, К.Л. Панчук, Н.В. Кайгородцева. – Омск: СИБАДИ, 2010. – 74 с., Volkov V.Ya. Sbornik zadach i uprazhneniy po nachertatel'noy geometrii (k uchebniku «Kurs nachertatel'noy geometrii na osnove geometricheskogo modelirovaniya») [Tekst] / V.Ya. Volkov, V.Yu. Yurkov, K.L. Panchuk, N.V. Kaygorodceva. – Omsk: SIBADI, 2010. – 74 s.

5. Выгодский М.Я. Аналитическая геометрия [Текст] / М.Я. Выгодский. – М.: Физматгиз, 1963. - 523 с., Vygodskiy M.Ya. Analiticheskaya geometriya [Tekst] / M.Ya. Vygodskiy. – M.: Fizmatgiz, 1963. - 523 s.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3