Mathematical Description for a Particular Case of Ellipse Focus Quasi-Rotation Around an Elliptical Axis

Author:

Antonova I.1,Solomonova E.1,Kadykova Nina2

Affiliation:

1. MIREA – Russian Technological University

2. Moskovskiy tehnologicheskiy universitet

Abstract

In this paper is provided mathematical analysis related to a particular case for a point quasi-rotation around a curve of an elliptical axis. The research complements the previous works in this direction. Has been considered a special case, in which the quasi-rotation correspondence is applied to a point located at the elliptical axis’s focus. This case is special, since the quasi-rotation center search is not invariant and does not lead to determination of four quasi-rotation centers, as in the general case. A constructive approach to the rotation center search shows that any point lying on the elliptical axis can be the quasi-rotation center. This feature leads to the fact that instead of four circles, the quasi-rotation of a point lying in the elliptical axis’s focus leads to the formation of an infinite number of circle families, which together form a channel surface. The resulting surface is a Dupin cyclide, whose throat circle has a zero radius and coincides with the original generating point. While analyzing are considered all cases of the rotation center location. Geometric constructions have been performed based on previously described methods of rotation around flat geometric objects’ curvilinear axes. For the study, the mathematical relationship between the coordinates of the initial set point, the axis curve equation and the motion trajectory equation of this point around the axis curve, described in earlier papers on this topic, is used. In the proposed paper has been provided the derivation of the motion trajectory equation for a point around the elliptic axis’s curve.

Publisher

Infra-M Academic Publishing House

Reference27 articles.

1. Антонова И.В. Математическое описание вращения точки вокруг эллиптической оси в некоторых частных случаях [Текст] / И.В. Антонова, И.А Беглов, Е.В. Соломонова // Геометрия и графика. – 2019. – Т. 7. – № 3. – С. 36-50. – DOI: 10.12737/article_5dce66dd9fb966.59423840., Antonova I.V. Matematicheskoe opisanie vrascheniya tochki vokrug ellipticheskoy osi v nekotoryh chastnyh sluchayah [Tekst] / I.V. Antonova, I.A Beglov, E.V. Solomonova // Geometriya i grafika. – 2019. – T. 7. – № 3. – S. 36-50. – DOI: 10.12737/article_5dce66dd9fb966.59423840.

2. Беглов И.А. Метод вращения геометрических объектов вокруг криволинейной оси [Текст] / И.А. Беглов, В.В Рустамян // Геометрия и графика. – 2017. – Т. 5. – № 3. – С. 45-50. — DOI: 10.12737/article_59bfa4eb0bf488.99866490., Beglov I.A. Metod vrascheniya geometricheskih ob'ektov vokrug krivolineynoy osi [Tekst] / I.A. Beglov, V.V Rustamyan // Geometriya i grafika. – 2017. – T. 5. – № 3. – S. 45-50. — DOI: 10.12737/article_59bfa4eb0bf488.99866490.

3. Беглов И.А. Математическое описание метода вращения точки вокруг криволинейной оси второго порядка [Текст] / И.А. Беглов, В.В Рустамян, И.В. Антонова // Геометрия и графика. – 2018. – Т. 6. – № 4. – С. 39-46. — DOI: 10.12737/article_5c21f6e832b4d2.25216268., Beglov I.A. Matematicheskoe opisanie metoda vrascheniya tochki vokrug krivolineynoy osi vtorogo poryadka [Tekst] / I.A. Beglov, V.V Rustamyan, I.V. Antonova // Geometriya i grafika. – 2018. – T. 6. – № 4. – S. 39-46. — DOI: 10.12737/article_5c21f6e832b4d2.25216268.

4. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры [Текст] / Д.В. Беклемишев. – М.: Физматлит, 2009. — 320с., Beklemishev D.V. Kurs analiticheskoy geometrii i lineynoy algebry [Tekst] / D.V. Beklemishev. – M.: Fizmatlit, 2009. — 320s.

5. Бермант А.Ф. Геометрический справочник по математике (Атлас кривых). Ч. 1. [Текст] / А.Ф. Бермант. — М.-Л.: ОНГИЗ НКТП, 1937. — 209 с., Bermant A.F. Geometricheskiy spravochnik po matematike (Atlas krivyh). Ch. 1. [Tekst] / A.F. Bermant. — M.-L.: ONGIZ NKTP, 1937. — 209 s.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3