Affiliation:
1. MIREA – Russian Technological University
2. Moskovskiy tehnologicheskiy universitet
Abstract
In this paper is provided mathematical analysis related to a particular case for a point quasi-rotation around a curve of an elliptical axis. The research complements the previous works in this direction. Has been considered a special case, in which the quasi-rotation correspondence is applied to a point located at the elliptical axis’s focus. This case is special, since the quasi-rotation center search is not invariant and does not lead to determination of four quasi-rotation centers, as in the general case. A constructive approach to the rotation center search shows that any point lying on the elliptical axis can be the quasi-rotation center. This feature leads to the fact that instead of four circles, the quasi-rotation of a point lying in the elliptical axis’s focus leads to the formation of an infinite number of circle families, which together form a channel surface. The resulting surface is a Dupin cyclide, whose throat circle has a zero radius and coincides with the original generating point. While analyzing are considered all cases of the rotation center location. Geometric constructions have been performed based on previously described methods of rotation around flat geometric objects’ curvilinear axes. For the study, the mathematical relationship between the coordinates of the initial set point, the axis curve equation and the motion trajectory equation of this point around the axis curve, described in earlier papers on this topic, is used. In the proposed paper has been provided the derivation of the motion trajectory equation for a point around the elliptic axis’s curve.
Publisher
Infra-M Academic Publishing House
Reference27 articles.
1. Антонова И.В. Математическое описание вращения точки вокруг эллиптической оси в некоторых частных случаях [Текст] / И.В. Антонова, И.А Беглов, Е.В. Соломонова // Геометрия и графика. – 2019. – Т. 7. – № 3. – С. 36-50. – DOI: 10.12737/article_5dce66dd9fb966.59423840., Antonova I.V. Matematicheskoe opisanie vrascheniya tochki vokrug ellipticheskoy osi v nekotoryh chastnyh sluchayah [Tekst] / I.V. Antonova, I.A Beglov, E.V. Solomonova // Geometriya i grafika. – 2019. – T. 7. – № 3. – S. 36-50. – DOI: 10.12737/article_5dce66dd9fb966.59423840.
2. Беглов И.А. Метод вращения геометрических объектов вокруг криволинейной оси [Текст] / И.А. Беглов, В.В Рустамян // Геометрия и графика. – 2017. – Т. 5. – № 3. – С. 45-50. — DOI: 10.12737/article_59bfa4eb0bf488.99866490., Beglov I.A. Metod vrascheniya geometricheskih ob'ektov vokrug krivolineynoy osi [Tekst] / I.A. Beglov, V.V Rustamyan // Geometriya i grafika. – 2017. – T. 5. – № 3. – S. 45-50. — DOI: 10.12737/article_59bfa4eb0bf488.99866490.
3. Беглов И.А. Математическое описание метода вращения точки вокруг криволинейной оси второго порядка [Текст] / И.А. Беглов, В.В Рустамян, И.В. Антонова // Геометрия и графика. – 2018. – Т. 6. – № 4. – С. 39-46. — DOI: 10.12737/article_5c21f6e832b4d2.25216268., Beglov I.A. Matematicheskoe opisanie metoda vrascheniya tochki vokrug krivolineynoy osi vtorogo poryadka [Tekst] / I.A. Beglov, V.V Rustamyan, I.V. Antonova // Geometriya i grafika. – 2018. – T. 6. – № 4. – S. 39-46. — DOI: 10.12737/article_5c21f6e832b4d2.25216268.
4. Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры [Текст] / Д.В. Беклемишев. – М.: Физматлит, 2009. — 320с., Beklemishev D.V. Kurs analiticheskoy geometrii i lineynoy algebry [Tekst] / D.V. Beklemishev. – M.: Fizmatlit, 2009. — 320s.
5. Бермант А.Ф. Геометрический справочник по математике (Атлас кривых). Ч. 1. [Текст] / А.Ф. Бермант. — М.-Л.: ОНГИЗ НКТП, 1937. — 209 с., Bermant A.F. Geometricheskiy spravochnik po matematike (Atlas krivyh). Ch. 1. [Tekst] / A.F. Bermant. — M.-L.: ONGIZ NKTP, 1937. — 209 s.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献