Ornament as the Basis for the Formation of Algorithmic Skills of Future Bachelors of Fine and Applied Arts

Author:

Muharkina A.1,Chernyakova T.2

Affiliation:

1. The Ural State University of Architecture and Art (USUAA)

2. Russian State Vocational Pedagogical University

Abstract

Ornamental compositions open up significant opportunities for the formation of algorithmic skills among bachelors of fine and applied arts. Geometric ornament is a good training material for the construction and analysis of digital art models with a flexible level of complexity. Descriptive geometry is considered as an applied tool for analyzing and creating an ornamental composition. The analysis of the ornament allows you to read architectural and artistic forms more professionally. The integration of descriptive geometry and computer graphics disciplines takes the content to a qualitatively new level. Geometric constructions in ornamental compositions are functionally convenient for creating digital models when studying vector graphic editors. The article reveals the problem of the formation of algorithmic skills among future bachelors of art as an important component of algorithmic culture and computational thinking. The descriptive geometry language and digital tools of vector computer graphics were chosen as the language of the algorithm description in solving ornamental compositions. The article presents a generalized algorithm for constructing a digital model of ornamental compositions, consisting of analytical, search, constructive, reproductive, reflexive, evaluative stages, including action and auxiliary questions for finding a solution to a graphical problem. An example of a particular algorithm for constructing the rose of Amiens Cathedral, performed by a student in the framework of studying the discipline "Modern Information Technologies", is given. The search for solutions at each stage is carried out with the help of auxiliary questions of the generalized algorithm. Special attention is paid to such stages of the algorithm as reflection of the finished digital model to investigate the possibility of using it in a given material.

Publisher

Infra-M Academic Publishing House

Subject

General Medicine

Reference38 articles.

1. Байдак В.А. Теория и методика обучения математике: наука, учебная дисциплина: монография [Текст] / В.А. Байдак. — Омск: Изд-во ОмГПУ, 2008. — 263 с., Baidak V.A. Teoriya i metodika obucheniya matematike: nauka, uchebnaya distsiplina [Theory and methodology of teaching mathematics: science, academic discipline]. Omsk, OMGPU Publ., 2008, 263 p. (in Russian)

2. Буткевич Л.М. История орнамента: учеб, пособие для студ. высш. пед. учеб, заведений, обучающихся по спец. «Изобразительное искусство» [Текст] / Л.М. Буткевич. — М.: Гуманитар, изд. Центр ВЛАДОС, 2017. — 267 с., Butkevich L.M. Istoriya ornamenta [Ornament history] Moscow, VLADOS Publ., 2017, 267 p. (in Russian)

3. Верхотурова Е.В. Причинно-следственный анализ проблем геометро-графической подготовки обучающихся технического вуза [Текст] / Е.В. Верхотурова, Г.А. Иващенко // Геометрия и графика. — 2022. — Т. 10 — № 2. — С. 60-69. — DOI 10.12737/2308-4898-2022-10-2-60-69., Verhoturova E.V., Ivaschenko G.A. Prichinno-sledstvennyi analiz problem geometro-graficheskoi podgotovki obuchayushchikhsya tekhnicheskogo vuza [Cause and effect diagram of the problems of geometric and graphic training of students at a technical university]. Geometriya i grafika [Geometry and graphics]. 2022, V. 10, I. 2, pp. 60-69. (in Russian)

4. Воронина Л.В. Теория и технологии математического образования детей дошкольного возраста: учеб. пособие [Текст] / Л.В. Воронина, Е.А. Утюмова; под общ. ред. Л. В. Ворониной. — Екатеринбург: УрГПУ, 2017. — 289 с., Voronina L.V., Utyumova E.A. Teoriya i tekhnologii matematicheskogo obrazovaniya detei doshkol'nogo vozrasta [Theory and technologies of mathematical education of preschool children]. Ekaterinburg, URGPU Publ., 2017, 289 p. (in Russian)

5. Гаврилова И.В. Трит-методика решения алгоритмических задач на уроках информатики в основной школе [Текст]: дис. ... канд. пед. наук: 13.00.02 / И.В. Гаврилова. — Красноярск, 2019. — 163 с., Gavrilova I.V. Trit-metodika resheniya algoritmicheskikh zadach na urokakh informatiki v osnovnoi shkole. Kand. Diss. [Trit-method for solving algorithmic problems in informatics lessons in primary school. Cand. Diss.]. Krasnoyarsk, 2019. 163 p. (in Russian)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3