Analysis of Some Problems from a Course on Theoretical Mechanics Solved by Descriptive Geometry’s Methods

Author:

Nazarova Olga1

Affiliation:

1. Ulyanovsk Institute of civil aviation named after Chief Marshal of aviation B.P. Bugaev

Abstract

In this paper the usability of descriptive geometry’s methods for solution problems related to theoretical mechanics is considered. Descriptive geometry emerged as a science intended for solution the problems of human activity’s different branches. In connection with development of modern graphical means, the value of descriptive geometry is greatly underestimated, but it is on descriptive geometry’s principles and laws that have been built algorithms used in graphic applications [30]. For a long time descriptive geometry has been used by scientists in various spheres of human activity [27]. In study of general technical disciplines, interdisciplinary connections play an important role, especially between theoretical disciplines, whose understanding is particularly difficult for students [35]. Understanding the possibility of using descriptive geometry’s methods, students can think over aspects of their use in the performance of tasks under study, for example, theoretical mechanics. Methods, which can be use while solving problems from the course of theoretical mechanics, are learned by students in the standard course of descriptive geometry and are not particularly difficult. Therefore, the graphical approach to solving problems of theoretical mechanics is accessible and understandable for majority of successful students. In this paper example problems from the course of theoretical mechanics on the topics "Plane System of Forces" and "Spatial System of Forces" have been considered. Graphical problem solving was performed using the image of force vectors with the help of orthogonal projections. For checking the correctness of graphicalcons.

Publisher

Infra-M Academic Publishing House

Reference35 articles.

1. Ананов, Г.Д. Метод ортогональных проекций в задачах механики [Текст] / Г.Д. Ананов. – М.: Гостехиздат, 1948. – 176 с., Ananov G.D. Metod ortogonal'nyh proekcij v zadachah mekhaniki. [The method of orthogonal projections in problems of mechanics]. Moscow: Gostekhizdat Publ., 1948. 176 p. (in Russian)

2. Аносов, В.Я. Основные начала физико-химического анализа [Текст] / В.Я. Аносов, С.А. Погодин. – М.-Л.: Изд-во АН СССР, 1947. – 876 с., Anosov V.Ya., Pogodin S.A. Osnovnye nachala fiziko-himicheskogo analiza. [Basic principles of physico-chemical analysis]. Moscow-Leningrad: Izdatel'stvo akademii nauk SSSR, 1947. 876 p. (in Russian)

3. Бать, М.И. Теоретическая механика в примерах и задачах. В 2 т. Т. 1. Статика и кинематика [Текст] / М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон. – СПб.: Лань, 2013. – 672 c., Bat M.I., Dzhanelidze G.Yu., Kelzon A.S. Teoreticheskaya mekhanika v primerah i zadachah. Statika i kinematika. [Theoretical mechanics in examples and problems. Statics and kinematics]. Saint-Petersberg.: Lan Publ., 2013, V. 1, 672 p. (in Russian)

4. Боровиков И.Ф. О применении преобразований при решении задач начертательной геометрии [Текст] / И.Ф. Боровиков, Г.С. Иванов, Н.Г. Суркова // Геометрия и графика. – 2018. – Т. 6. – №2. – С. 3-22. – DOI: 10.12737/article_5b55a35d683a33.30813949., Borovikov I.F., Ivanov G.S., Surkova N.G. O primenenii preobrazovanij pri reshenii zadach nachertatel'noj geometrii. [On applicatoin of transformations at diecriptive geometry’s problems solution.] Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 2, pp. 3–22. DOI: 10.12737/article_5b55a35d683a33.30813949. (in Russian)

5. Василевский А.Б. Методы решения геометрических задач [Текст] / А.Б. Василевский. – Минск, «Вышейшая школа», 1969. – 232 с., Vasilevsky A.B. Metody resheniya geometricheskih zadach. [Methods for solving geometric problems]. Minsk, "Vysshaya shkola" Publ., 1969. 232 p. (in Russian)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3