Content of the “Geometric Modeling” Course for the “Mathematics and Computer Science” Training Program

Author:

Zaharov A.1,Zakharova Y.1

Affiliation:

1. Bauman Moscow State Technical University

Abstract

In this paper has been considered the main content and distinctive features of the “Geometric Modeling” training course for the “Mathematics and Computer Science” training program 02.03.01 (“Mathematical and Computer Modeling” specialization). The goal of the “Geometric Modeling” course study is the assimilation of mathematical methods for construction of geometric objects with complex curved shapes, and techniques for their computer visualization by using polygons of curves and surfaces. Methods for construction of structures’ curved shapes using spline representations, as well as techniques for construction of surfaces and volumetric geometries using motion operations and basic logical operations on geometric objects are considered. The spline representations include linear and bilinear splines, Hermite cubic splines and Hermite surfaces, natural cubic and bicubic interpolation splines, Bezier curves and surfaces, rational Bezier splines, B-splines and B-spline surfaces, NURBS-curves and NURBS-surfaces, transfinite interpolation methods, and splines of surfaces with triangular form. Logical operations for intersection of two spline curves, and intersection of two parametric surfaces are considered. The principles of scientific visualization and computer animation are considered in this course as well. Some examples for visualization of initial data and results of curves and surfaces construction in two- and three-dimensional spaces through the software shell developed by authors and used by students while doing tests have been demonstrated. The software shell has a web interface with the WebGL library graphic support. Tasks for four practical studies in a computer classroom, as well as several variations of homework are represented. The problems occurring in preparation materials for some course sections are discussed, as well as the practical importance of acquired knowledge for the further progress of students. The paper may be interesting for teachers of “Geometric Modeling” and “Computer Graphics” courses aimed to students with a specialization in mathematics and information, as well as to those who independently develop software interfaces for algorithms of geometric modeling.

Publisher

Infra-M Academic Publishing House

Subject

General Medicine

Reference32 articles.

1. Алексюк А.А. Лабораторный практикум по компьютерной графике [Текст] / А.А. Алексюк // Геометрия и графика. –– 2017. –– Т. 5. –– № 3. –– С. 78–85. –– DOI: 10.12737/article_59bfa72b151052.53229281., Aleksyuk A.A. Laboratornyy praktikum po komp'yuternoy grafike [Tekst] / A.A. Aleksyuk // Geometriya i grafika. –– 2017. –– T. 5. –– № 3. –– S. 78–85. –– DOI: 10.12737/article_59bfa72b151052.53229281.

2. Брылкин Ю.В. Моделирование микро- и наноструктуры поверхности для решения задач газовой динамики и тепломассообмена [Текст] / Ю.В. Брылкин // Геометрия и графика. –– 2018. –– Т. 6. –– № 2. –– С. 95–100. –– DOI: 10.12737/article_5b55a695093294.45142608., Brylkin Yu.V. Modelirovanie mikro- i nanostruktury poverhnosti dlya resheniya zadach gazovoy dinamiki i teplomassoobmena [Tekst] / Yu.V. Brylkin // Geometriya i grafika. –– 2018. –– T. 6. –– № 2. –– S. 95–100. –– DOI: 10.12737/article_5b55a695093294.45142608.

3. Голованов Н.Н. Геометрическое моделирование [Текст] / Н.Н. Голованов. — М.: Физматлит, 2002. — 472 с., Golovanov N.N. Geometricheskoe modelirovanie [Tekst] / N.N. Golovanov. — M.: Fizmatlit, 2002. — 472 s.

4. Голованов Н.Н. Компьютерная геометрия [Текст]: учеб. пособие для студ. вузов / Н.Н. Голованов [и др.]. — М.: Академия, 2006. — 512 с., Golovanov N.N. Komp'yuternaya geometriya [Tekst]: ucheb. posobie dlya stud. vuzov / N.N. Golovanov [i dr.]. — M.: Akademiya, 2006. — 512 s.

5. Димитриенко Ю.И. Метод ленточных адаптивных сеток для численного моделирования в газовой динамике [Текст] / Ю.И. Димитриенко, В.П. Котенев, А.А. Захаров. — М.: Физматлит, 2011. — 280 с., Dimitrienko Yu.I. Metod lentochnyh adaptivnyh setok dlya chislennogo modelirovaniya v gazovoy dinamike [Tekst] / Yu.I. Dimitrienko, V.P. Kotenev, A.A. Zaharov. — M.: Fizmatlit, 2011. — 280 s.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3