Mathematical model of radiation energy absorption by multilayer structure and solution by grid method

Author:

Chubur K.1,Strukov I.2,Evdokimova Svetlana2,Volkov Vladimir2,Platonov Aleksey2,Cherkasov Oleg2,Chevychelov Yu.2

Affiliation:

1. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov

2. Voronezh State University of Forestry and Technologies named after G.F. Morozov

Abstract

When studying the radiation effect on microcircuits, the problem arises of calculating the absorbed energy. Often it comes down to determining the radiation resistance of microcircuits. However, in some cases it is necessary to determine the distribution of temperature and voltage in the chip housings. To do this, it is necessary to get an accurate picture of how the radiation energy was absorbed in each layer, depending on the coordinate. The paper considers the solution of this problem by the grid method, which allows us to calculate the energy absorption at each point of the multilayer structure. To do this, the placement of the chip in a three-dimensional coordinate system is considered, its multilayer structure is divided into nodes, in each of which the absorbed dose is calculated. The presented mathematical model describes the processes of absorption and attenuation of the intensity of the energy flow of -quanta. The model takes into account the processes associated with the transfer of energy between the regions for the photoelectric effect and the Compton effect. The proposed method is implemented programmatically, and the paper presents the results of calculating the absorbed dose in each layer of a multilayer structure. The advantage of the developed model and the method of its solution is to obtain the dose value at each point of the multilayer structure depending on the coordinates.

Publisher

Infra-M Academic Publishing House

Subject

General Medicine

Reference22 articles.

1. Модель поглощения электромагнитного излучения СВЧ-диапазона биологическими тканями / И.А. Лагуцкий, М.В. Давыдов, В.В. Кизименко, В.А. Богуш // Доклады Белорусского государственного университета информатики и радиоэлектроники. – 2021. – Т. 19, № 1. – С. 52-60. – DOI: 10.35596/1729-7648-2021-91-1-52-60., Model' pogloscheniya elektromagnitnogo izlucheniya SVCh-diapazona biologicheskimi tkanyami / I.A. Laguckiy, M.V. Davydov, V.V. Kizimenko, V.A. Bogush // Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioelektroniki. – 2021. – T. 19, № 1. – S. 52-60. – DOI: 10.35596/1729-7648-2021-91-1-52-60.

2. Мокрушина, С.А. Сравнение отклика МОП-транзистора на воздействие рентгеновского и гамма-облучения / С.А. Мокрушина, Н.М. Романов // Известия высших учебных заведений России. Радиоэлектроника. – 2020. – Т. 23. № 1. – С. 30-40. – DOI: 10.32603/1993-8985-2020-23-1-30-40., Mokrushina, S.A. Sravnenie otklika MOP-tranzistora na vozdeystvie rentgenovskogo i gamma-oblucheniya / S.A. Mokrushina, N.M. Romanov // Izvestiya vysshih uchebnyh zavedeniy Rossii. Radioelektronika. – 2020. – T. 23. № 1. – S. 30-40. – DOI: 10.32603/1993-8985-2020-23-1-30-40.

3. Лагаев, Д.А. Конструктивно-технологические особенности КМОП КНИ транзисторов с повышенной стойкостью к накопленной дозе ионизирующего излучения / Д.А. Лагаев, Н.А. Шелепин // Электронная техника. Серия 3: Микроэлектроника. – 2020. – № 1 (177). – С. 5-13. – DOI: 10.7868/S2410993220010017., Lagaev, D.A. Konstruktivno-tehnologicheskie osobennosti KMOP KNI tranzistorov s povyshennoy stoykost'yu k nakoplennoy doze ioniziruyuschego izlucheniya / D.A. Lagaev, N.A. Shelepin // Elektronnaya tehnika. Seriya 3: Mikroelektronika. – 2020. – № 1 (177). – S. 5-13. – DOI: 10.7868/S2410993220010017.

4. Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials / S. Yue, M. Hou, R. Wang [et al.] // Optics Express. – 2020. –Vol. 28(21). – Pp. 31844-31861. – DOI: 10.1364/OE.403551., Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials / S. Yue, M. Hou, R. Wang [et al.] // Optics Express. – 2020. –Vol. 28(21). – Pp. 31844-31861. – DOI: 10.1364/OE.403551.

5. Калашников, Н.П. Интенсивность излучения, возникающего при взаимодействии релятивистского электрона с периодическими неоднородностями потенциала монокристалла / Н.П. Калашников, А.С. Ольчак // Вестник Национального исследовательского ядерного университета МИФИ. – 2021. – Т. 10, № 5. – С. 385-389. – DOI: 10.1134/S2304487X21050060., Kalashnikov, N.P. Intensivnost' izlucheniya, voznikayuschego pri vzaimodeystvii relyativistskogo elektrona s periodicheskimi neodnorodnostyami potenciala monokristalla / N.P. Kalashnikov, A.S. Ol'chak // Vestnik Nacional'nogo issledovatel'skogo yadernogo universiteta MIFI. – 2021. – T. 10, № 5. – S. 385-389. – DOI: 10.1134/S2304487X21050060.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3