Representations of Dupin Cyclides

Author:

Сальков Николай1,Sal'kov Nikolay2

Affiliation:

1. Московский государственный академический художественный институт имени В.И. Сурикова

2. Moscow State Academic Art Institute named after V.I. Surikov

Abstract

We know very little about such an interesting surface as Dupin cyclide. It belongs to channel surfaces, its special cases are tor, conical and cylindrical surfaces of rotation. It is known that Dupin cyclides are the only surfaces whose focal surfaces, that are surfaces consisting of sets of curvatures centers points, have been degenerated in second-order curves. Two sets give two confocal conics. That is why any study of Dupin cyclides is of great interest both scientific and applied. In the works devoted to Dupin cyclide and published in the "Geometry and Graphics" journal, are presented various properties of cyclides, and demonstrated application of these surfaces in various industries, mostly in construction. Based on the cyclides’ properties in 1980s have been developed numerous inventions relating to devices for drawing and having the opportunity to be applied in various geometric constructions with the use of computer technologies. In the present paper have been considered various options for representation of Dupin cyclides on a different basis – from the traditional way using the three given spheres unto the second-order curves. In such a case, if it is possible to represent four cyclides by three spheres, and when cyclide is represented by the second-order curve (konic) and the sphere their number is reduced to two, then in representation of cyclide by the conic and one of two cyclide’s axes a single Dupin cyclide is obtained. The conic itself without any additional parameters represents the single-parameter set of cyclides. Representations of Dupin cyclides by ellipse, hyperbola and parabola have been considered. The work has been sufficiently illustrated.

Publisher

Infra-M Academic Publishing House

Reference25 articles.

1. Аргунов Б.И. Геометрические построения на плоскости [Текст] / Б.И. Аргунов, М.Б. Балк. — М.: Учпедгиз, 1957. — 267 с., Argunov B.I., Balk M.B. Geometricheskie postroenija na ploskosti [Geometric constructions on the plane]. Moscow, Uchpedgiz Publ., 1957. (in Russian).

2. Аргунов Б.И. Элементарная геометрия [Текст] / Б.И. Аргунов, М.Б. Балк. — М.: Просвещение, 1966. — 240 с., Argunov B.I., Balk M.B. Elementarnaja geometrija [Elementary geometry]. Moscow, Prosveshhenie Publ., 1966. 240 p.

3. Берже М. Геометрия. Т. 1 [Текст] / М. Берже. — М.: Мир, 1984. — 500 с., Berzhe M. Geometrija [The geometry]. V. 1. Moscow, Mir Publ., 1984. 500 p.

4. Берже М. Геометрия. Т. 2 [Текст] / М. Берже. — М.: Мир, 1984. — 368 с., Berzhe M. Geometrija [The geometry]. V. 2. Moscow, Mir Publ., 1984. 368 p.

5. Гильберт Д. Наглядная геометрия [Текст] / Д. Гильберт, С. Кон-Фоссен. — М.-Л.: Объединенное научно-техническое издательство НКТП СССР, Главная редакция общетехнической литературы и номографии, 1936. — 302 с., Gil'bert D., Kon-Fossen S. Nagljadnaja geometrija [Visual geometry]. Moscow, Leningrad, Obyedinennoe nauchno-tehnicheskoe izdatel'stvo NKTP SSSR, Glavnaya redakcija obshhetehnicheskoj literatury i nomografii Publ., 1936. 302 p.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3