Approximation of Linear Sets in the Plane

Author:

Юрков В.1,Yurkov V.2

Affiliation:

1. Омский государственный педагогический университет

2. Omsk State Technical University

Abstract

A few general lines in the ordinary Euclidean plane are said to be line generators of a plane linear set. To be able to say that every line of the set belongs to one-parametrical line set we have to find their envelope. We thus create a pencil of lines. In this article it will be shown that there are a finite number of pencils in one linear set. To find a pencil of lines the linear parametrical approximation is applied. Almost all of problems concerning the parametrical approximation of figure sets are well known and deeply developed for any point sets. The problem of approximation for non-point sets is an actual one. The aim of this paper is to give a path to parametrical approximation of linear sets defined in plane. The sets are discrete and consist of finite number of lines without any order. Each line of the set is given as y = ax + b. Parametrical approximation means a transformation the discrete set of lines into completely continuous family of lines. There are some problems. 1. The problem of order. It is necessary to represent the chaotic set of lines as well-ordered one. The problem is solved by means of directed circuits. Any of chaotic sets has a finite number of directed circuits. To create an order means to find all directed circuits in the given set. 2. The problem of choice. In order to find the best approximation, for example, the simplest one it is necessary to choose the simplest circuit. Some criteria of the choice are discussed in the paper. 3. Interpolation the set of line factors. A direct approach would simply construct an interpolation for all line factors. But this can lead to undesirable oscillations of the line family. To eliminate the oscillations the special factor interpolation are suggested. There are linear sets having one or several multiple points, one or several multiple lines and various combinations of multiple points and lines. Some theorems applied to these cases are formulated in the paper.

Publisher

Infra-M Academic Publishing House

Reference28 articles.

1. Болдырев В.И. Метод кусочно-линейной аппроксимации для решения задач оптимального управления [Текст] / В.И. Болдырев // Дифференциальные уравнения и процессы управления. – 2004. – № 1. – С. 28 – 123., Boldyrev V.I. Metod kusochno-linejnoj approksimacii dlya resheniya zadach optimal'nogo upravleniya [The piecewise linear approximation method for solving optimal control problems]. Differencial'nye uravneniya i processy upravleniya [Differential equations and control processes]. 2004, I. 1, pp. 28–123. (in Russian)

2. Бубырь Д.С. Применение принципа кусочности при прогнозировании состояния технической системы [Текст] / Д.С. Бубырь // Современные проблемы проектирования, производства и эксплуатации радиотехнических систем. – 2015. - № 1(9). – С. 223-225., Bubyr' D.S. Primenenie principa kusochnosti pri prognozirovanii sostoyaniya tekhnicheskoj sistemy [Application of the principle of piecewiseness in predicting the state of a technical system]. Sovremennye problemy proektirovaniya, proizvodstva i ekspluatacii radiotekhnicheskih system [Modern problems of design, production and operation of radio systems]. 2015, I. 1(9), pp. 223–225. (in Russian)

3. Васильев А.А. Некоторые применения вычислительной геометрии к задачам линейного программирования [Текст]/ А.А. Васильев, А.Н. Королева // Вестник Сыктывкарского университета. Серия 1: Математика, механика, информатика. – 2009. – Вып. 10. – С. 113-118., Vasil'ev A.A. Nekotorye primeneniya vychislitel'noj geometrii k zadacham linejnogo programmirovaniya [Some applications of computational geometry to linear programming problems]. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika, mekhanika, informatika [Bulletin of the Syktyvkar University. Series 1: Mathematics, Mechanics, Computer Science]. 2009, I. 10, pp. 113–118. (in Russian)

4. Гирш А.Г. Огибающая семейства линий [Текст] / А.Г. Гирш // Геометрия и графика. – 2016. – Т. 4. – № 4. – С. 14-18. – DOI:10.12737/22839, Girsh A.G. Ogibayushchaya semejstva linij [Envelope of the line family]. Geometriya i grafika [Geometry and Graphics]. 2016, V. 4, I. 4, pp. 14–18. DOI:10.12737/22839. (in Russian)

5. Гольдовская М.Д. Алгоритмы кусочно-линейной аппроксимации сложных зависимостей и их практическое использование [Текст] / М.Д. Гольдовская, Е.В. Бауман, Ю.А. Дорофеюк // Управление развитием крупномасштабных систем MLSD’2008. – 2008. – С. 91-93., Gol'dovskaya M.D. Algoritmy kusochno-linejnoj approksimacii slozhnyh zavisimostej i ih prakticheskoe ispol'zovanie [Algorithms for piecewise linear approximation of complex dependencies and their practical use]. Upravlenie razvitiem krupnomasshtabnyh sistem MLSD’2008 [Management of the development of large-scale systems MLSD’2008]. 2008, pp. 91–93. (in Russian)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3