Investigation of Wheat Germ and Oil Characteristics with Regard to Different Stabilization Techniques

Author:

Arslan Derya1ORCID,Demir M. Kürşat1ORCID,Acar Ayşenur1ORCID,Arslan Fatma Nur2ORCID

Affiliation:

1. Department of Food Engineering, Faculty of Engineering and Architecture, Necmettin Erbakan University, Koycegiz Campus, Konya, Turkey

2. Department of Chemistry, Faculty of Science, Karamanoğlu Mehmetbey University, Karaman, Turkey

Abstract

Research background. Utilization of wheat germ (WG) and wheat germ oil (WGO) is limited due to high enzymatic activity and unsaturated fatty acids and therefore stabilization techniques are needed to overcome this problem. Experimental approach. In this study, the effects of stabilization methods (dry convective oven heating at 90 and 160 oC and microwave radiation under 180 W and 360 W output power, and steaming by autoclave) on both WG and WGO were evaluated. Results and conclusions. Steaming caused the most dramatic changes on lipoxygenase, free fatty acids (FFA), DPPH radical scavenging activity, tocopherols and tocotrienols. The lowest peroxide values (PVs) were measured in oils of convectional heating (160 oC) and steaming treatments which were performed at temperatures above 100 oC. However, para-anisidine values (pAVs) of samples treated at higher temperatures were considerably greater than those of stabilized at lower temperatures. Oven heating at 160 oC was also one of the most effective treatments on inactivation of lipoxygenase coming after steaming. Steaming also induced a significant reduction in total tocopherols which was directly associated with the greater lost in β-tocopherol content. On the contrary γ- and δ-tocopherols and tocotrienol homologs were abundant with higher amounts in steam applied samples. α-Tocopherol and γ-tocotrienol were the most resistant isomers to stabilization processes. Novelty and scientific contribution. This study shows that the high temperature oven heating method, which is widely used in the industry for thermal stabilization of wheat germ, does not provide an advantage in oxidative stability compared to steaming and microwave applications. Steaming delayed oxidation in germ, while further inhibiting lipoxygenase activity. Moreover, tocotrienols were more conservable. In industrial application, low power in microwave (180 W instead of 360 W), lower temperature in oven heating (90 instead of 160 oC) would be preferable.

Publisher

Faculty of Food Technology and Biotechnology - University of Zagreb

Subject

Industrial and Manufacturing Engineering,General Chemical Engineering,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3