An Experimental Comparison of Anomaly Detection Methods for Collaborative Robot Manipulators

Author:

Graabæk Søren Goddiksen,Ancker Emil Vincent,Christensen Anders Lyhne,Fugl Andreas Rune

Abstract

<p>See abstract and datasets [10.5281/zenodo.5849300]<br> <br> There exist a large number of methods that can be used for anomaly detection/fault detection in collaborative robots. However, studies on these methods tend to only focus on a single or a couple of such methods, which can make it challenging to gauge their relative merits in specific robot scenarios. In this paper, we conduct a comprehensive comparison of 15 methods for anomaly detection, including methods based on principle component analysis, local outlier factor, and autoencoders. The methods are assessed in a typical pick-and-place application with respect to their capacity to detect a broad range of exogenous anomalies. The results of the study show that several methods perform well, but that their performance profiles differ across the studied anomalies. The results also give an indication of the application characteristics that have the potential to make anomaly detection challenging.</p>

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3