Is It Worth It? Comparing Six Deep and Classical Methods for Unsupervised Anomaly Detection in Time Series
Author:
Affiliation:
1. Institute of Data Science, German Aerospace Center, 07745 Jena, Germany
2. Faculty of Mathematics and Computer Science, Friedrich Schiller University, 07743 Jena, Germany
Abstract
Publisher
MDPI AG
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Link
https://www.mdpi.com/2076-3417/13/3/1778/pdf
Reference49 articles.
1. A Unifying Review of Deep and Shallow Anomaly Detection;Ruff;Proc. IEEE,2021
2. Healthcare and anomaly detection: Using machine learning to predict anomalies in heart rate data;Keeley;AI Soc.,2021
3. Tetko, I.V., Kůrková, V., Karpov, P., and Theis, F. (2019). Artificial Neural Networks and Machine Learning—ICANN 2019: Text and Time Series, Springer International Publishing.
4. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection;Buczak;IEEE Commun. Surv. Tutor.,2016
5. A Multi-Step Anomaly Detection Strategy Based on Robust Distances for the Steel Industry;Sarda;IEEE Access,2021
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Explainable time series anomaly detection using masked latent generative modeling;Pattern Recognition;2024-12
2. STFT-TCAN: A TCN-attention based multivariate time series anomaly detection architecture with time-frequency analysis for cyber-industrial systems;Computers & Security;2024-09
3. Comparing a linear transfer function-noise model and a neural network to model boiler bank fouling in a kraft recovery boiler;TAPPI Journal;2024-07-29
4. Navigating Energy Market Dynamics: A preliminary framework for anomaly detection in balancing utilities;2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON);2024-06-25
5. DeepHYDRA: A Hybrid Deep Learning and DBSCAN-Based Approach to Time-Series Anomaly Detection in Dynamically-Configured Systems;Proceedings of the 38th ACM International Conference on Supercomputing;2024-05-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3