Is It Worth It? Comparing Six Deep and Classical Methods for Unsupervised Anomaly Detection in Time Series

Author:

Rewicki Ferdinand12ORCID,Denzler Joachim2ORCID,Niebling Julia1ORCID

Affiliation:

1. Institute of Data Science, German Aerospace Center, 07745 Jena, Germany

2. Faculty of Mathematics and Computer Science, Friedrich Schiller University, 07743 Jena, Germany

Abstract

Detecting anomalies in time series data is important in a variety of fields, including system monitoring, healthcare and cybersecurity. While the abundance of available methods makes it difficult to choose the most appropriate method for a given application, each method has its strengths in detecting certain types of anomalies. In this study, we compare six unsupervised anomaly detection methods of varying complexity to determine whether more complex methods generally perform better and if certain methods are better suited to certain types of anomalies. We evaluated the methods using the UCR anomaly archive, a recent benchmark dataset for anomaly detection. We analyzed the results on a dataset and anomaly-type level after adjusting the necessary hyperparameters for each method. Additionally, we assessed the ability of each method to incorporate prior knowledge about anomalies and examined the differences between point-wise and sequence-wise features. Our experiments show that classical machine learning methods generally outperform deep learning methods across a range of anomaly types.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3