A Discriminative Neighborhood-Based Collaborative Learning for Remote Sensing Scene Classification

Author:

Muhammad Usman,Hoque Md. ZiaulORCID,Wang Weiqiang,Oussalah Mourad

Abstract

The bag-of-words (BoW) model is one of the most popular representation methods for image classification. However, the lack of spatial information, change of illumination, and inter-class similarity among scene categories impair its performance in the remote-sensing domain. To alleviate these issues, this paper proposes to explore the spatial dependencies between different image regions and introduce a neighborhood-based collaborative learning (NBCL) for remote-sensing scene classification. Particularly, our proposed method employs multilevel features learning based on small, medium, and large neighborhood regions to enhance the discriminative power of image representation. To achieve this, image patches are selected through a fixed-size sliding window where each image is represented by four independent image region sequences. Apart from multilevel learning, we explicitly impose Gaussian pyramids to magnify the visual information of the scene images and optimize their position and scale parameters locally. Motivated by this, a local descriptor is exploited to extract multilevel and multiscale features that we represent in terms of codewords histogram by performing k-means clustering. Finally, a simple fusion strategy is proposed to balance the contribution of these features, and the fused features are incorporated into a Bidirectional Long Short-Term Memory (BiLSTM) network for constructing the final representation for classification. Experimental results on NWPU-RESISC45, AID, UC-Merced, and WHU-RS datasets demonstrate that the proposed approach not only surpasses the conventional bag-of-words approaches but also yields significantly higher classification performance than the existing state-of-the-art deep learning methods used nowadays.

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3