A Novel Discriminative Enhancement Method for Few-Shot Remote Sensing Image Scene Classification

Author:

Chen Yanqiao1,Li Yangyang2,Mao Heting2,Liu Guangyuan2ORCID,Chai Xinghua1,Jiao Licheng2

Affiliation:

1. The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China

2. Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Joint International Research Laboratory of Intelligent Perception and Computation, International Research Center for Intelligent Perception and Computation, Collaborative Innovation Center of Quantum Information of Shaanxi Province, School of Artificial Intelligence, Xidian University, Xi’an 710071, China

Abstract

Remote sensing image scene classification (RSISC) has garnered significant attention in recent years. Numerous methods have been put forward in an attempt to tackle this issue, particularly leveraging deep learning methods that have shown promising performance in classifying remote sensing image (RSI). However, it is widely recognized that deep learning methods typically require a substantial amount of labeled data to effectively converge. Acquiring a sufficient quantity of labeled data often necessitates significant human and material resources. Hence, few-shot RSISC has become highly meaningful. Fortunately, the recently proposed deep nearest neighbor neural network based on the attention mechanism (DN4AM) model incorporates episodic training and class-related attention mechanisms, effectively reducing the impact of background noise regions on classification results. Nevertheless, the DN4AM model does not address the problem of significant intra-class variability and substantial inter-class similarities observed in RSI scenes. Therefore, the discriminative enhanced attention-based deep nearest neighbor neural network (DEADN4) is proposed to address the few-shot RSISC task. Our method makes three contributions. Firstly, we introduce center loss to enhance the intra-class feature compactness. Secondly, we utilize the deep local-global descriptor (DLGD) to increase inter-class feature differentiation. Lastly, we modify the Softmax loss by incorporating cosine margin to amplify the inter-class feature dissimilarity. Experiments are conducted on three diverse RSI datasets to gauge the efficacy of our approach. Through comparative analysis with various cutting-edge methods including MatchingNet, RelationNet, MAML, Meta-SGD, DN4, and DN4AM, our approach showcases promising outcomes in the few-shot RSISC task.

Funder

National Natural Science Foundation of China

Research Project of SongShan Laboratory

Natural Science Basic Research Program of Shaanxi

Fund for Foreign Scholars in University Research and Teaching Programs

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3