Modelling and Design of State Estimator for a Pick and Place Robotic Arm

Author:

Dandago Khalid K.,Mohammed Ameer,Ubadike Osichinaka C.,Zango Mahmud S.,Hassan Abdulbasit,Muhammad Muhammad I.,Yahaya Jamilu U.

Abstract

A robust model is essential for the design of system components such as controllers, observers state estimators, and simulators. State estimators are becoming increasingly important in modern systems, especially systems with states that may not be measured with sensors. Therefore, it is imperative to analyze the performance of different modelling and state estimator design techniques. In this research work, a parametric model of a pick and place robotic arm was obtained using system identification technique. Pick and place robotic arms have a lot of industrial applications. The parameters of the obtained model were determined using the general second-order characteristics equation and manual tuning. Furthermore, five state estimators were designed based on the developed model. The accuracy of the model, and the performance of the observers were analyzed. The model was found to provide a good representation of the system. Nonetheless, with very small divergence between the model and the real system. The performance of the observers was found to be dependent on their pole locations; the higher the magnitude of the poles, the higher the state estimators’ gain and the better the estimation provided. It was found out that the state estimators with high gains were more susceptible to measurement noise. Keywords— Modelling, pick and place robots, observers, and state estimators.

Publisher

Faculty of Engineering, Federal University Oye-Ekiti

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Event- Triggered based Control of Robotic Arm Under Denial of Service;2024 21st International Multi-Conference on Systems, Signals & Devices (SSD);2024-04-22

2. Analysis of Robust Control Method for Single Link Flexible Manipulator;2024 21st International Multi-Conference on Systems, Signals & Devices (SSD);2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3