Author:
Deng Mingdong,Ju Nengpan,Wu Tianwei,Wen Yan,Xie Mingli,Zhao Weihua,He Jiayang
Publisher
Editorial Office of Earth Science
Reference35 articles.
1. Abraham, M. T., Satyam, N., Lokesh, R., et al., 2021. Factors Affecting Landslide Susceptibility Mapping: Assessing the Influence of Different Machine Learning Approaches, Sampling Strategies and Data Splitting. Land, 10(9): 989. https://doi.org/10.3390/land10090989
2. Ali, R., Kuriqi, A., Kisi, O., 2020. Human-Environment Natural Disasters Interconnection in China: A Review. Climate, 8(4): 48. https://doi.org/10.3390/cli8040048
3. Bayat, M., Ghorbanpour, M., Zare, R., et al., 2019. Application of Artificial Neural Networks for Predicting Tree Survival and Mortality in the Hyrcanian Forest of Iran. Computers and Electronics in Agriculture, 164: 104929. https://doi.org/10.1016/j.compag.2019.104929
4. Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Machine Learning, 20(3): 273-297. https://doi.org/10.1007/BF00994018
5. Hu, T., Fan, X., Wang, S., et al., 2020. Landslide Susceptibility Evaluation of Sinan County Using Logistics Regression Model and 3S Technology. Bulletin of Geological Science and Technology, 39(2): 113-121 (in Chinese with English abstract).